debug pipeline

This commit is contained in:
hofee 2024-10-21 07:33:32 +00:00
parent d0fbb0f198
commit 9ca0851bf7
6 changed files with 55 additions and 47 deletions

View File

@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
class DataSplitApp: class DataSplitApp:
@staticmethod @staticmethod
def start(): def start():
DataSpliter("configs/server/split_dataset_config.yaml").run() DataSpliter("configs/server/server_split_dataset_config.yaml").run()

View File

@ -10,13 +10,13 @@ runner:
root_dir: "experiments" root_dir: "experiments"
split: # split: #
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy" root_dir: "/data/hofee/data/packed_preprocessed_data"
type: "unseen_instance" # "unseen_category" type: "unseen_instance" # "unseen_category"
datasets: datasets:
OmniObject3d_train: OmniObject3d_train:
path: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt" path: "/data/hofee/data/OmniObject3d_train.txt"
ratio: 0.9 ratio: 0.9
OmniObject3d_test: OmniObject3d_test:
path: "../data/sample_for_training_preprocessed/OmniObject3d_test.txt" path: "/data/hofee/data/OmniObject3d_test.txt"
ratio: 0.1 ratio: 0.1

View File

@ -7,13 +7,13 @@ runner:
parallel: False parallel: False
experiment: experiment:
name: full_w_global_feat_wo_local_pts_feat name: test_new_pipeline_train_overfit
root_dir: "experiments" root_dir: "experiments"
use_checkpoint: False use_checkpoint: False
epoch: -1 # -1 stands for last epoch epoch: -1 # -1 stands for last epoch
max_epochs: 5000 max_epochs: 5000
save_checkpoint_interval: 1 save_checkpoint_interval: 1
test_first: True test_first: False
train: train:
optimizer: optimizer:
@ -25,46 +25,46 @@ runner:
test: test:
frequency: 3 # test frequency frequency: 3 # test frequency
dataset_list: dataset_list:
- OmniObject3d_test #- OmniObject3d_test
- OmniObject3d_val - OmniObject3d_val
pipeline: nbv_reconstruction_global_pts_pipeline pipeline: nbv_reconstruction_global_pts_n_num_pipeline
dataset: dataset:
OmniObject3d_train: OmniObject3d_train:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy" root_dir: "/data/hofee/data/packed_preprocessed_data"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt" split_file: "/data/hofee/data/OmniObject3d_train_overfit.txt"
type: train type: train
cache: True cache: True
ratio: 1 ratio: 1
batch_size: 160 batch_size: 16
num_workers: 16 num_workers: 16
pts_num: 4096 pts_num: 4096
load_from_preprocess: True load_from_preprocess: True
OmniObject3d_test: # OmniObject3d_test:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy" # root_dir: "/data/hofee/data/packed_preprocessed_data"
model_dir: "../data/scaled_object_meshes" # model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset # source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt" # split_file: "/data/hofee/data/OmniObject3d_test.txt"
type: test # type: test
cache: True # cache: True
filter_degree: 75 # filter_degree: 75
eval_list: # eval_list:
- pose_diff # - pose_diff
ratio: 0.05 # ratio: 0.05
batch_size: 160 # batch_size: 160
num_workers: 12 # num_workers: 12
pts_num: 4096 # pts_num: 4096
load_from_preprocess: True # load_from_preprocess: True
OmniObject3d_val: OmniObject3d_val:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy" root_dir: "/data/hofee/data/packed_preprocessed_data"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt" split_file: "/data/hofee/data/OmniObject3d_train_overfit.txt"
type: test type: test
cache: True cache: True
filter_degree: 75 filter_degree: 75
@ -96,6 +96,15 @@ pipeline:
eps: 1e-5 eps: 1e-5
global_scanned_feat: True global_scanned_feat: True
nbv_reconstruction_global_pts_n_num_pipeline:
modules:
pts_encoder: pointnet_encoder
transformer_seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
pts_num_encoder: pts_num_encoder
eps: 1e-5
global_scanned_feat: True
module: module:
@ -107,7 +116,7 @@ module:
feature_transform: False feature_transform: False
transformer_seq_encoder: transformer_seq_encoder:
embed_dim: 1344 embed_dim: 384
num_heads: 4 num_heads: 4
ffn_dim: 256 ffn_dim: 256
num_layers: 3 num_layers: 3
@ -116,7 +125,7 @@ module:
gf_view_finder: gf_view_finder:
t_feat_dim: 128 t_feat_dim: 128
pose_feat_dim: 256 pose_feat_dim: 256
main_feat_dim: 2048 main_feat_dim: 3072
regression_head: Rx_Ry_and_T regression_head: Rx_Ry_and_T
pose_mode: rot_matrix pose_mode: rot_matrix
per_point_feature: False per_point_feature: False
@ -128,6 +137,9 @@ module:
pose_dim: 9 pose_dim: 9
out_dim: 256 out_dim: 256
pts_num_encoder:
out_dim: 64
loss_function: loss_function:
gf_loss: gf_loss:

View File

@ -117,22 +117,20 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
for seq_idx in range(seq_len): for seq_idx in range(seq_len):
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl) partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl) partial_feat = torch.mean(partial_perpoint_feat, dim=0) # Tensor(Dl)
partial_feat_seq.append(partial_feat) partial_feat_seq.append(partial_feat)
scanned_target_pts_num.append(partial_perpoint_feat.shape[0]) scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S) scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.float32).to(device).unsqueeze(-1) # Tensor(S)
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9) scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp) pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn) pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl) partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl)) seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl)) embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds) seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg)) main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
if torch.isnan(main_feat).any(): if torch.isnan(main_feat).any():

View File

@ -8,7 +8,7 @@ import torch
import os import os
import sys import sys
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction") sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
from utils.data_load import DataLoadUtil from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil from utils.pose import PoseUtil
@ -31,7 +31,7 @@ class NBVReconstructionDataset(BaseDataset):
self.load_from_preprocess = config.get("load_from_preprocess", False) self.load_from_preprocess = config.get("load_from_preprocess", False)
if self.type == namespace.Mode.TEST: if self.type == namespace.Mode.TEST:
self.model_dir = config["model_dir"] #self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"] self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN: if self.type == namespace.Mode.TRAIN:
scale_ratio = 1 scale_ratio = 1
@ -66,7 +66,9 @@ class NBVReconstructionDataset(BaseDataset):
if max_coverage_rate > scene_max_coverage_rate: if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate scene_max_coverage_rate = max_coverage_rate
max_coverage_rate_list.append(max_coverage_rate) max_coverage_rate_list.append(max_coverage_rate)
mean_coverage_rate = np.mean(max_coverage_rate_list)
if max_coverage_rate_list:
mean_coverage_rate = np.mean(max_coverage_rate_list)
for seq_idx in range(seq_num): for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path( label_path = DataLoadUtil.get_label_path(
@ -122,7 +124,7 @@ class NBVReconstructionDataset(BaseDataset):
scanned_views_pts, scanned_views_pts,
scanned_coverages_rate, scanned_coverages_rate,
scanned_n_to_world_pose, scanned_n_to_world_pose,
) = ([], [], [], []) ) = ([], [], [])
for view in scanned_views: for view in scanned_views:
frame_idx = view[0] frame_idx = view[0]
coverage_rate = view[1] coverage_rate = view[1]
@ -164,19 +166,14 @@ class NBVReconstructionDataset(BaseDataset):
combined_scanned_views_pts, self.pts_num, require_idx=True combined_scanned_views_pts, self.pts_num, require_idx=True
) )
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8) combined_scanned_views_pts_mask = np.zeros(len(combined_scanned_views_pts), dtype=np.uint8)
start_idx = 0 start_idx = 0
for i in range(len(scanned_views_pts)): for i in range(len(scanned_views_pts)):
end_idx = start_idx + len(scanned_views_pts[i]) end_idx = start_idx + len(scanned_views_pts[i])
combined_scanned_views_pts_mask[start_idx:end_idx] = i combined_scanned_views_pts_mask[start_idx:end_idx] = i
start_idx = end_idx start_idx = end_idx
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx] fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
data_item = { data_item = {
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3) "scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S) "scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
@ -241,10 +238,9 @@ if __name__ == "__main__":
torch.manual_seed(seed) torch.manual_seed(seed)
np.random.seed(seed) np.random.seed(seed)
config = { config = {
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy", "root_dir": "/data/hofee/data/packed_preprocessed_data",
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
"source": "nbv_reconstruction_dataset", "source": "nbv_reconstruction_dataset",
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt", "split_file": "/data/hofee/data/OmniObject3d_train.txt",
"load_from_preprocess": True, "load_from_preprocess": True,
"ratio": 0.5, "ratio": 0.5,
"batch_size": 2, "batch_size": 2,

View File

@ -34,6 +34,8 @@ class DataLoadUtil:
@staticmethod @staticmethod
def get_label_num(root, scene_name): def get_label_num(root, scene_name):
label_dir = os.path.join(root, scene_name, "label") label_dir = os.path.join(root, scene_name, "label")
if not os.path.exists(label_dir):
return 0
return len(os.listdir(label_dir)) return len(os.listdir(label_dir))
@staticmethod @staticmethod