debug pipeline

This commit is contained in:
hofee 2024-10-21 07:33:32 +00:00
parent d0fbb0f198
commit 9ca0851bf7
6 changed files with 55 additions and 47 deletions

View File

@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
class DataSplitApp:
@staticmethod
def start():
DataSpliter("configs/server/split_dataset_config.yaml").run()
DataSpliter("configs/server/server_split_dataset_config.yaml").run()

View File

@ -10,13 +10,13 @@ runner:
root_dir: "experiments"
split: #
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
root_dir: "/data/hofee/data/packed_preprocessed_data"
type: "unseen_instance" # "unseen_category"
datasets:
OmniObject3d_train:
path: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
path: "/data/hofee/data/OmniObject3d_train.txt"
ratio: 0.9
OmniObject3d_test:
path: "../data/sample_for_training_preprocessed/OmniObject3d_test.txt"
path: "/data/hofee/data/OmniObject3d_test.txt"
ratio: 0.1

View File

@ -7,13 +7,13 @@ runner:
parallel: False
experiment:
name: full_w_global_feat_wo_local_pts_feat
name: test_new_pipeline_train_overfit
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
max_epochs: 5000
save_checkpoint_interval: 1
test_first: True
test_first: False
train:
optimizer:
@ -25,46 +25,46 @@ runner:
test:
frequency: 3 # test frequency
dataset_list:
- OmniObject3d_test
#- OmniObject3d_test
- OmniObject3d_val
pipeline: nbv_reconstruction_global_pts_pipeline
pipeline: nbv_reconstruction_global_pts_n_num_pipeline
dataset:
OmniObject3d_train:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
root_dir: "/data/hofee/data/packed_preprocessed_data"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
split_file: "/data/hofee/data/OmniObject3d_train_overfit.txt"
type: train
cache: True
ratio: 1
batch_size: 160
batch_size: 16
num_workers: 16
pts_num: 4096
load_from_preprocess: True
OmniObject3d_test:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.05
batch_size: 160
num_workers: 12
pts_num: 4096
load_from_preprocess: True
# OmniObject3d_test:
# root_dir: "/data/hofee/data/packed_preprocessed_data"
# model_dir: "../data/scaled_object_meshes"
# source: nbv_reconstruction_dataset
# split_file: "/data/hofee/data/OmniObject3d_test.txt"
# type: test
# cache: True
# filter_degree: 75
# eval_list:
# - pose_diff
# ratio: 0.05
# batch_size: 160
# num_workers: 12
# pts_num: 4096
# load_from_preprocess: True
OmniObject3d_val:
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
root_dir: "/data/hofee/data/packed_preprocessed_data"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
split_file: "/data/hofee/data/OmniObject3d_train_overfit.txt"
type: test
cache: True
filter_degree: 75
@ -96,6 +96,15 @@ pipeline:
eps: 1e-5
global_scanned_feat: True
nbv_reconstruction_global_pts_n_num_pipeline:
modules:
pts_encoder: pointnet_encoder
transformer_seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
pts_num_encoder: pts_num_encoder
eps: 1e-5
global_scanned_feat: True
module:
@ -107,7 +116,7 @@ module:
feature_transform: False
transformer_seq_encoder:
embed_dim: 1344
embed_dim: 384
num_heads: 4
ffn_dim: 256
num_layers: 3
@ -116,7 +125,7 @@ module:
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 2048
main_feat_dim: 3072
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False
@ -128,6 +137,9 @@ module:
pose_dim: 9
out_dim: 256
pts_num_encoder:
out_dim: 64
loss_function:
gf_loss:

View File

@ -117,22 +117,20 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
for seq_idx in range(seq_len):
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl)
partial_feat = torch.mean(partial_perpoint_feat, dim=0) # Tensor(Dl)
partial_feat_seq.append(partial_feat)
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S)
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.float32).to(device).unsqueeze(-1) # Tensor(S)
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
if torch.isnan(main_feat).any():

View File

@ -8,7 +8,7 @@ import torch
import os
import sys
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
@ -31,7 +31,7 @@ class NBVReconstructionDataset(BaseDataset):
self.load_from_preprocess = config.get("load_from_preprocess", False)
if self.type == namespace.Mode.TEST:
self.model_dir = config["model_dir"]
#self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN:
scale_ratio = 1
@ -66,7 +66,9 @@ class NBVReconstructionDataset(BaseDataset):
if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate
max_coverage_rate_list.append(max_coverage_rate)
mean_coverage_rate = np.mean(max_coverage_rate_list)
if max_coverage_rate_list:
mean_coverage_rate = np.mean(max_coverage_rate_list)
for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(
@ -122,7 +124,7 @@ class NBVReconstructionDataset(BaseDataset):
scanned_views_pts,
scanned_coverages_rate,
scanned_n_to_world_pose,
) = ([], [], [], [])
) = ([], [], [])
for view in scanned_views:
frame_idx = view[0]
coverage_rate = view[1]
@ -164,19 +166,14 @@ class NBVReconstructionDataset(BaseDataset):
combined_scanned_views_pts, self.pts_num, require_idx=True
)
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
combined_scanned_views_pts_mask = np.zeros(len(combined_scanned_views_pts), dtype=np.uint8)
start_idx = 0
for i in range(len(scanned_views_pts)):
end_idx = start_idx + len(scanned_views_pts[i])
combined_scanned_views_pts_mask[start_idx:end_idx] = i
start_idx = end_idx
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
data_item = {
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
@ -241,10 +238,9 @@ if __name__ == "__main__":
torch.manual_seed(seed)
np.random.seed(seed)
config = {
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
"root_dir": "/data/hofee/data/packed_preprocessed_data",
"source": "nbv_reconstruction_dataset",
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
"split_file": "/data/hofee/data/OmniObject3d_train.txt",
"load_from_preprocess": True,
"ratio": 0.5,
"batch_size": 2,

View File

@ -34,6 +34,8 @@ class DataLoadUtil:
@staticmethod
def get_label_num(root, scene_name):
label_dir = os.path.join(root, scene_name, "label")
if not os.path.exists(label_dir):
return 0
return len(os.listdir(label_dir))
@staticmethod