debug pipeline
This commit is contained in:
parent
d0fbb0f198
commit
9ca0851bf7
@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
|
||||
class DataSplitApp:
|
||||
@staticmethod
|
||||
def start():
|
||||
DataSpliter("configs/server/split_dataset_config.yaml").run()
|
||||
DataSpliter("configs/server/server_split_dataset_config.yaml").run()
|
||||
|
@ -10,13 +10,13 @@ runner:
|
||||
root_dir: "experiments"
|
||||
|
||||
split: #
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||
root_dir: "/data/hofee/data/packed_preprocessed_data"
|
||||
type: "unseen_instance" # "unseen_category"
|
||||
datasets:
|
||||
OmniObject3d_train:
|
||||
path: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
|
||||
path: "/data/hofee/data/OmniObject3d_train.txt"
|
||||
ratio: 0.9
|
||||
|
||||
OmniObject3d_test:
|
||||
path: "../data/sample_for_training_preprocessed/OmniObject3d_test.txt"
|
||||
path: "/data/hofee/data/OmniObject3d_test.txt"
|
||||
ratio: 0.1
|
@ -7,13 +7,13 @@ runner:
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: full_w_global_feat_wo_local_pts_feat
|
||||
name: test_new_pipeline_train_overfit
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
max_epochs: 5000
|
||||
save_checkpoint_interval: 1
|
||||
test_first: True
|
||||
test_first: False
|
||||
|
||||
train:
|
||||
optimizer:
|
||||
@ -25,46 +25,46 @@ runner:
|
||||
test:
|
||||
frequency: 3 # test frequency
|
||||
dataset_list:
|
||||
- OmniObject3d_test
|
||||
#- OmniObject3d_test
|
||||
- OmniObject3d_val
|
||||
|
||||
pipeline: nbv_reconstruction_global_pts_pipeline
|
||||
pipeline: nbv_reconstruction_global_pts_n_num_pipeline
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||
root_dir: "/data/hofee/data/packed_preprocessed_data"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
||||
split_file: "/data/hofee/data/OmniObject3d_train_overfit.txt"
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 160
|
||||
batch_size: 16
|
||||
num_workers: 16
|
||||
pts_num: 4096
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_test:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.05
|
||||
batch_size: 160
|
||||
num_workers: 12
|
||||
pts_num: 4096
|
||||
load_from_preprocess: True
|
||||
# OmniObject3d_test:
|
||||
# root_dir: "/data/hofee/data/packed_preprocessed_data"
|
||||
# model_dir: "../data/scaled_object_meshes"
|
||||
# source: nbv_reconstruction_dataset
|
||||
# split_file: "/data/hofee/data/OmniObject3d_test.txt"
|
||||
# type: test
|
||||
# cache: True
|
||||
# filter_degree: 75
|
||||
# eval_list:
|
||||
# - pose_diff
|
||||
# ratio: 0.05
|
||||
# batch_size: 160
|
||||
# num_workers: 12
|
||||
# pts_num: 4096
|
||||
# load_from_preprocess: True
|
||||
|
||||
OmniObject3d_val:
|
||||
root_dir: "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy"
|
||||
root_dir: "/data/hofee/data/packed_preprocessed_data"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/home/data/hofee/project/nbv_rec/data/OmniObject3d_train.txt"
|
||||
split_file: "/data/hofee/data/OmniObject3d_train_overfit.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
@ -96,6 +96,15 @@ pipeline:
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
nbv_reconstruction_global_pts_n_num_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
transformer_seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
pts_num_encoder: pts_num_encoder
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
|
||||
module:
|
||||
@ -107,7 +116,7 @@ module:
|
||||
feature_transform: False
|
||||
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 1344
|
||||
embed_dim: 384
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
@ -116,7 +125,7 @@ module:
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 2048
|
||||
main_feat_dim: 3072
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
@ -128,6 +137,9 @@ module:
|
||||
pose_dim: 9
|
||||
out_dim: 256
|
||||
|
||||
pts_num_encoder:
|
||||
out_dim: 64
|
||||
|
||||
loss_function:
|
||||
gf_loss:
|
||||
|
||||
|
@ -117,22 +117,20 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
for seq_idx in range(seq_len):
|
||||
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
||||
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
||||
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl)
|
||||
partial_feat = torch.mean(partial_perpoint_feat, dim=0) # Tensor(Dl)
|
||||
partial_feat_seq.append(partial_feat)
|
||||
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
||||
|
||||
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S)
|
||||
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.float32).to(device).unsqueeze(-1) # Tensor(S)
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
||||
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
||||
|
||||
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
||||
|
||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
|
@ -8,7 +8,7 @@ import torch
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
@ -31,7 +31,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||
|
||||
if self.type == namespace.Mode.TEST:
|
||||
self.model_dir = config["model_dir"]
|
||||
#self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
if self.type == namespace.Mode.TRAIN:
|
||||
scale_ratio = 1
|
||||
@ -66,7 +66,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
if max_coverage_rate > scene_max_coverage_rate:
|
||||
scene_max_coverage_rate = max_coverage_rate
|
||||
max_coverage_rate_list.append(max_coverage_rate)
|
||||
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||
|
||||
if max_coverage_rate_list:
|
||||
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||
|
||||
for seq_idx in range(seq_num):
|
||||
label_path = DataLoadUtil.get_label_path(
|
||||
@ -122,7 +124,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scanned_views_pts,
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
) = ([], [], [], [])
|
||||
) = ([], [], [])
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
@ -164,19 +166,14 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
combined_scanned_views_pts, self.pts_num, require_idx=True
|
||||
)
|
||||
|
||||
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
|
||||
combined_scanned_views_pts_mask = np.zeros(len(combined_scanned_views_pts), dtype=np.uint8)
|
||||
|
||||
start_idx = 0
|
||||
for i in range(len(scanned_views_pts)):
|
||||
end_idx = start_idx + len(scanned_views_pts[i])
|
||||
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
||||
start_idx = end_idx
|
||||
|
||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||
|
||||
|
||||
|
||||
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
||||
@ -241,10 +238,9 @@ if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
|
||||
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
|
||||
"root_dir": "/data/hofee/data/packed_preprocessed_data",
|
||||
"source": "nbv_reconstruction_dataset",
|
||||
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
|
||||
"split_file": "/data/hofee/data/OmniObject3d_train.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
|
@ -34,6 +34,8 @@ class DataLoadUtil:
|
||||
@staticmethod
|
||||
def get_label_num(root, scene_name):
|
||||
label_dir = os.path.join(root, scene_name, "label")
|
||||
if not os.path.exists(label_dir):
|
||||
return 0
|
||||
return len(os.listdir(label_dir))
|
||||
|
||||
@staticmethod
|
||||
|
Loading…
x
Reference in New Issue
Block a user