add target_pts_num into dataset
This commit is contained in:
parent
cb983fdc74
commit
99e57c3f4c
@ -7,6 +7,7 @@ from PytorchBoot.utils.log_util import Log
|
|||||||
import torch
|
import torch
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||||
|
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
@ -29,7 +30,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
self.cache = config.get("cache")
|
self.cache = config.get("cache")
|
||||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||||
|
|
||||||
|
|
||||||
if self.type == namespace.Mode.TEST:
|
if self.type == namespace.Mode.TEST:
|
||||||
self.model_dir = config["model_dir"]
|
self.model_dir = config["model_dir"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.filter_degree = config["filter_degree"]
|
||||||
@ -42,8 +42,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
|
self.cache_dir = os.path.join(expr_root, expr_name, "cache")
|
||||||
# self.preprocess_cache()
|
# self.preprocess_cache()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def load_scene_name_list(self):
|
def load_scene_name_list(self):
|
||||||
scene_name_list = []
|
scene_name_list = []
|
||||||
with open(self.split_file_path, "r") as f:
|
with open(self.split_file_path, "r") as f:
|
||||||
@ -60,7 +58,9 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
max_coverage_rate_list = []
|
max_coverage_rate_list = []
|
||||||
|
|
||||||
for seq_idx in range(seq_num):
|
for seq_idx in range(seq_num):
|
||||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
label_path = DataLoadUtil.get_label_path(
|
||||||
|
self.root_dir, scene_name, seq_idx
|
||||||
|
)
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
max_coverage_rate = label_data["max_coverage_rate"]
|
max_coverage_rate = label_data["max_coverage_rate"]
|
||||||
if max_coverage_rate > scene_max_coverage_rate:
|
if max_coverage_rate > scene_max_coverage_rate:
|
||||||
@ -69,20 +69,24 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
mean_coverage_rate = np.mean(max_coverage_rate_list)
|
||||||
|
|
||||||
for seq_idx in range(seq_num):
|
for seq_idx in range(seq_num):
|
||||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
|
label_path = DataLoadUtil.get_label_path(
|
||||||
|
self.root_dir, scene_name, seq_idx
|
||||||
|
)
|
||||||
label_data = DataLoadUtil.load_label(label_path)
|
label_data = DataLoadUtil.load_label(label_path)
|
||||||
if max_coverage_rate_list[seq_idx] > mean_coverage_rate - 0.1:
|
if max_coverage_rate_list[seq_idx] > mean_coverage_rate - 0.1:
|
||||||
for data_pair in label_data["data_pairs"]:
|
for data_pair in label_data["data_pairs"]:
|
||||||
scanned_views = data_pair[0]
|
scanned_views = data_pair[0]
|
||||||
next_best_view = data_pair[1]
|
next_best_view = data_pair[1]
|
||||||
datalist.append({
|
datalist.append(
|
||||||
|
{
|
||||||
"scanned_views": scanned_views,
|
"scanned_views": scanned_views,
|
||||||
"next_best_view": next_best_view,
|
"next_best_view": next_best_view,
|
||||||
"seq_max_coverage_rate": max_coverage_rate,
|
"seq_max_coverage_rate": max_coverage_rate,
|
||||||
"scene_name": scene_name,
|
"scene_name": scene_name,
|
||||||
"label_idx": seq_idx,
|
"label_idx": seq_idx,
|
||||||
"scene_max_coverage_rate": scene_max_coverage_rate
|
"scene_max_coverage_rate": scene_max_coverage_rate,
|
||||||
})
|
}
|
||||||
|
)
|
||||||
return datalist
|
return datalist
|
||||||
|
|
||||||
def preprocess_cache(self):
|
def preprocess_cache(self):
|
||||||
@ -107,9 +111,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
np.savetxt(cache_path, data)
|
np.savetxt(cache_path, data)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
Log.error(f"Save cache failed: {e}")
|
Log.error(f"Save cache failed: {e}")
|
||||||
# ----- Debug Trace ----- #
|
|
||||||
import ipdb; ipdb.set_trace()
|
|
||||||
# ------------------------ #
|
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
data_item_info = self.datalist[index]
|
data_item_info = self.datalist[index]
|
||||||
@ -117,18 +118,28 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
nbv = data_item_info["next_best_view"]
|
nbv = data_item_info["next_best_view"]
|
||||||
max_coverage_rate = data_item_info["seq_max_coverage_rate"]
|
max_coverage_rate = data_item_info["seq_max_coverage_rate"]
|
||||||
scene_name = data_item_info["scene_name"]
|
scene_name = data_item_info["scene_name"]
|
||||||
scanned_views_pts, scanned_coverages_rate, scanned_n_to_world_pose = [], [], []
|
(
|
||||||
|
scanned_views_pts,
|
||||||
|
scanned_coverages_rate,
|
||||||
|
scanned_n_to_world_pose,
|
||||||
|
scanned_target_pts_num,
|
||||||
|
) = ([], [], [], [])
|
||||||
|
target_pts_num_dict = DataLoadUtil.load_target_pts_num_dict(
|
||||||
|
self.root_dir, scene_name
|
||||||
|
)
|
||||||
for view in scanned_views:
|
for view in scanned_views:
|
||||||
frame_idx = view[0]
|
frame_idx = view[0]
|
||||||
coverage_rate = view[1]
|
coverage_rate = view[1]
|
||||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||||
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||||
|
target_pts_num = target_pts_num_dict[frame_idx]
|
||||||
n_to_world_pose = cam_info["cam_to_world"]
|
n_to_world_pose = cam_info["cam_to_world"]
|
||||||
nR_to_world_pose = cam_info["cam_to_world_R"]
|
nR_to_world_pose = cam_info["cam_to_world_R"]
|
||||||
|
|
||||||
if self.load_from_preprocess:
|
if self.load_from_preprocess:
|
||||||
downsampled_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(view_path)
|
downsampled_target_point_cloud = (
|
||||||
|
DataLoadUtil.load_from_preprocessed_pts(view_path)
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
cached_data = None
|
cached_data = None
|
||||||
if self.cache:
|
if self.cache:
|
||||||
@ -136,72 +147,90 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
|
|
||||||
if cached_data is None:
|
if cached_data is None:
|
||||||
print("load depth")
|
print("load depth")
|
||||||
depth_L, depth_R = DataLoadUtil.load_depth(view_path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
|
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||||
point_cloud_L = DataLoadUtil.get_point_cloud(depth_L, cam_info['cam_intrinsic'], n_to_world_pose)['points_world']
|
view_path,
|
||||||
point_cloud_R = DataLoadUtil.get_point_cloud(depth_R, cam_info['cam_intrinsic'], nR_to_world_pose)['points_world']
|
cam_info["near_plane"],
|
||||||
|
cam_info["far_plane"],
|
||||||
|
binocular=True,
|
||||||
|
)
|
||||||
|
point_cloud_L = DataLoadUtil.get_point_cloud(
|
||||||
|
depth_L, cam_info["cam_intrinsic"], n_to_world_pose
|
||||||
|
)["points_world"]
|
||||||
|
point_cloud_R = DataLoadUtil.get_point_cloud(
|
||||||
|
depth_R, cam_info["cam_intrinsic"], nR_to_world_pose
|
||||||
|
)["points_world"]
|
||||||
|
|
||||||
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 65536)
|
point_cloud_L = PtsUtil.random_downsample_point_cloud(
|
||||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
|
point_cloud_L, 65536
|
||||||
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
|
)
|
||||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(overlap_points, self.pts_num)
|
point_cloud_R = PtsUtil.random_downsample_point_cloud(
|
||||||
|
point_cloud_R, 65536
|
||||||
|
)
|
||||||
|
overlap_points = DataLoadUtil.get_overlapping_points(
|
||||||
|
point_cloud_L, point_cloud_R
|
||||||
|
)
|
||||||
|
downsampled_target_point_cloud = (
|
||||||
|
PtsUtil.random_downsample_point_cloud(
|
||||||
|
overlap_points, self.pts_num
|
||||||
|
)
|
||||||
|
)
|
||||||
if self.cache:
|
if self.cache:
|
||||||
self.save_to_cache(scene_name, frame_idx, downsampled_target_point_cloud)
|
self.save_to_cache(
|
||||||
|
scene_name, frame_idx, downsampled_target_point_cloud
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
downsampled_target_point_cloud = cached_data
|
downsampled_target_point_cloud = cached_data
|
||||||
|
|
||||||
scanned_views_pts.append(downsampled_target_point_cloud)
|
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||||
scanned_coverages_rate.append(coverage_rate)
|
scanned_coverages_rate.append(coverage_rate)
|
||||||
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(n_to_world_pose[:3,:3]))
|
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||||
|
np.asarray(n_to_world_pose[:3, :3])
|
||||||
|
)
|
||||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||||
|
scanned_target_pts_num.append(target_pts_num)
|
||||||
|
|
||||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||||
best_frame_to_world = cam_info["cam_to_world"]
|
best_frame_to_world = cam_info["cam_to_world"]
|
||||||
|
|
||||||
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_frame_to_world[:3,:3]))
|
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||||
|
np.asarray(best_frame_to_world[:3, :3])
|
||||||
|
)
|
||||||
best_to_world_trans = best_frame_to_world[:3, 3]
|
best_to_world_trans = best_frame_to_world[:3, 3]
|
||||||
best_to_world_9d = np.concatenate([best_to_world_6d, best_to_world_trans], axis=0)
|
best_to_world_9d = np.concatenate(
|
||||||
|
[best_to_world_6d, best_to_world_trans], axis=0
|
||||||
|
)
|
||||||
|
|
||||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
voxel_downsampled_combined_scanned_pts_np = (
|
||||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
||||||
|
)
|
||||||
|
random_downsampled_combined_scanned_pts_np = (
|
||||||
|
PtsUtil.random_downsample_point_cloud(
|
||||||
|
voxel_downsampled_combined_scanned_pts_np, self.pts_num
|
||||||
|
)
|
||||||
|
)
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32),
|
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32),
|
||||||
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np,dtype=np.float32),
|
"combined_scanned_pts": np.asarray(
|
||||||
|
random_downsampled_combined_scanned_pts_np, dtype=np.float32
|
||||||
|
),
|
||||||
"scanned_coverage_rate": scanned_coverages_rate,
|
"scanned_coverage_rate": scanned_coverages_rate,
|
||||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose,dtype=np.float32),
|
"scanned_n_to_world_pose_9d": np.asarray(
|
||||||
|
scanned_n_to_world_pose, dtype=np.float32
|
||||||
|
),
|
||||||
"best_coverage_rate": nbv_coverage_rate,
|
"best_coverage_rate": nbv_coverage_rate,
|
||||||
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32),
|
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32),
|
||||||
"seq_max_coverage_rate": max_coverage_rate,
|
"seq_max_coverage_rate": max_coverage_rate,
|
||||||
"scene_name": scene_name
|
"scene_name": scene_name,
|
||||||
|
"scanned_target_points_num": np.asarray(
|
||||||
|
scanned_target_pts_num, dtype=np.int32
|
||||||
|
),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
# if self.type == namespace.Mode.TEST:
|
|
||||||
# diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
|
||||||
# voxel_threshold = diag*0.02
|
|
||||||
# model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
|
||||||
# pts_list = []
|
|
||||||
# for view in scanned_views:
|
|
||||||
# frame_idx = view[0]
|
|
||||||
# view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
|
||||||
# point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(view_path, binocular=True)
|
|
||||||
# cam_params = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
|
||||||
# sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree)
|
|
||||||
# pts_list.append(sampled_point_cloud)
|
|
||||||
# nL_to_world_pose = cam_params["cam_to_world"]
|
|
||||||
# nO_to_world_pose = cam_params["cam_to_world_O"]
|
|
||||||
# nO_to_nL_pose = np.dot(np.linalg.inv(nL_to_world_pose), nO_to_world_pose)
|
|
||||||
# data_item["scanned_target_pts_list"] = pts_list
|
|
||||||
# data_item["model_points_normals"] = model_points_normals
|
|
||||||
# data_item["voxel_threshold"] = voxel_threshold
|
|
||||||
# data_item["filter_degree"] = self.filter_degree
|
|
||||||
# data_item["scene_path"] = os.path.join(self.root_dir, scene_name)
|
|
||||||
# data_item["first_frame_to_world"] = np.asarray(first_frame_to_world, dtype=np.float32)
|
|
||||||
# data_item["nO_to_nL_pose"] = np.asarray(nO_to_nL_pose, dtype=np.float32)
|
|
||||||
return data_item
|
return data_item
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
@ -210,22 +239,44 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
def get_collate_fn(self):
|
def get_collate_fn(self):
|
||||||
def collate_fn(batch):
|
def collate_fn(batch):
|
||||||
collate_data = {}
|
collate_data = {}
|
||||||
collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch]
|
collate_data["scanned_pts"] = [
|
||||||
collate_data["scanned_n_to_world_pose_9d"] = [torch.tensor(item['scanned_n_to_world_pose_9d']) for item in batch]
|
torch.tensor(item["scanned_pts"]) for item in batch
|
||||||
collate_data["best_to_world_pose_9d"] = torch.stack([torch.tensor(item['best_to_world_pose_9d']) for item in batch])
|
]
|
||||||
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
|
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||||
|
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||||
|
]
|
||||||
|
collate_data["scanned_target_points_num"] = [
|
||||||
|
torch.tensor(item["scanned_target_points_num"]) for item in batch
|
||||||
|
]
|
||||||
|
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||||
|
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
|
||||||
|
)
|
||||||
|
collate_data["combined_scanned_pts"] = torch.stack(
|
||||||
|
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||||
|
)
|
||||||
if "first_frame_to_world" in batch[0]:
|
if "first_frame_to_world" in batch[0]:
|
||||||
collate_data["first_frame_to_world"] = torch.stack([torch.tensor(item["first_frame_to_world"]) for item in batch])
|
collate_data["first_frame_to_world"] = torch.stack(
|
||||||
|
[torch.tensor(item["first_frame_to_world"]) for item in batch]
|
||||||
|
)
|
||||||
for key in batch[0].keys():
|
for key in batch[0].keys():
|
||||||
if key not in ["scanned_pts", "scanned_n_to_world_pose_9d", "best_to_world_pose_9d", "first_frame_to_world", "combined_scanned_pts"]:
|
if key not in [
|
||||||
|
"scanned_pts",
|
||||||
|
"scanned_n_to_world_pose_9d",
|
||||||
|
"best_to_world_pose_9d",
|
||||||
|
"first_frame_to_world",
|
||||||
|
"combined_scanned_pts",
|
||||||
|
"scanned_target_points_num",
|
||||||
|
]:
|
||||||
collate_data[key] = [item[key] for item in batch]
|
collate_data[key] = [item[key] for item in batch]
|
||||||
return collate_data
|
return collate_data
|
||||||
|
|
||||||
return collate_fn
|
return collate_fn
|
||||||
|
|
||||||
|
|
||||||
# -------------- Debug ---------------- #
|
# -------------- Debug ---------------- #
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
seed = 0
|
seed = 0
|
||||||
torch.manual_seed(seed)
|
torch.manual_seed(seed)
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
@ -250,35 +301,7 @@ if __name__ == "__main__":
|
|||||||
data = ds.process_batch(data, "cuda:0")
|
data = ds.process_batch(data, "cuda:0")
|
||||||
print(data)
|
print(data)
|
||||||
# ------ Debug Start ------
|
# ------ Debug Start ------
|
||||||
import ipdb;ipdb.set_trace()
|
import ipdb
|
||||||
|
|
||||||
|
ipdb.set_trace()
|
||||||
# ------ Debug End ------
|
# ------ Debug End ------
|
||||||
#
|
|
||||||
# for idx, data in enumerate(dl):
|
|
||||||
# cnt=0
|
|
||||||
# print(data["scene_name"])
|
|
||||||
# print(data["scanned_coverage_rate"])
|
|
||||||
# print(data["best_coverage_rate"])
|
|
||||||
# for pts in data["scanned_pts"][0]:
|
|
||||||
# #np.savetxt(f"pts_{cnt}.txt", pts)
|
|
||||||
# cnt+=1
|
|
||||||
# #np.savetxt("best_pts.txt", best_pts)
|
|
||||||
# for key, value in data.items():
|
|
||||||
# if isinstance(value, torch.Tensor):
|
|
||||||
# print(key, ":" ,value.shape)
|
|
||||||
# else:
|
|
||||||
# print(key, ":" ,len(value))
|
|
||||||
# if key == "scanned_n_to_world_pose_9d":
|
|
||||||
# for val in value:
|
|
||||||
# print(val.shape)
|
|
||||||
# if key == "scanned_pts":
|
|
||||||
# print("scanned_pts")
|
|
||||||
# for val in value:
|
|
||||||
# print(val.shape)
|
|
||||||
# cnt = 0
|
|
||||||
# for v in val:
|
|
||||||
# import ipdb;ipdb.set_trace()
|
|
||||||
# np.savetxt(f"pts_{cnt}.txt", v)
|
|
||||||
# cnt+=1
|
|
||||||
|
|
||||||
|
|
||||||
# print()
|
|
@ -98,6 +98,13 @@ class DataLoadUtil:
|
|||||||
scene_info = json.load(f)
|
scene_info = json.load(f)
|
||||||
return scene_info
|
return scene_info
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load_target_pts_num_dict(root, scene_name):
|
||||||
|
target_pts_num_path = os.path.join(root, scene_name, "target_pts_num.json")
|
||||||
|
with open(target_pts_num_path, "r") as f:
|
||||||
|
target_pts_num_dict = json.load(f)
|
||||||
|
return target_pts_num_dict
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load_target_object_pose(root, scene_name):
|
def load_target_object_pose(root, scene_name):
|
||||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user