Basic Framework

This commit is contained in:
hofee 2024-08-18 00:37:17 +08:00
commit 73dcd592df
14 changed files with 733 additions and 0 deletions

14
.gitignore vendored Normal file
View File

@ -0,0 +1,14 @@
__pycache__/
.DS_Store
.idea
experiments/
pytorch3d/
test/
*.xyz
*.zip
*.txt
*.pkl
*.log
/data_generation/data/*
/data_generation/output/*
test/

View File

@ -0,0 +1,7 @@
EXTERNAL_FREEZE_MODULES = set()
def external_freeze(cls):
if not hasattr(cls, 'load') or not callable(getattr(cls, 'load')):
raise TypeError(f"external module <{cls.__name__}> must implement a 'load' method")
EXTERNAL_FREEZE_MODULES.add(cls)
return cls

34
annotations/stereotype.py Normal file
View File

@ -0,0 +1,34 @@
# --- Classes --- #
def dataset():
pass
def module():
pass
def pipeline():
pass
def runner():
pass
def factory():
pass
# --- Functions --- #
evaluation_methods = {}
def evaluation_method(eval_type):
def decorator(func):
evaluation_methods[eval_type] = func
return func
return decorator
def loss_function():
pass
# --- Main --- #

74
configs/config.py Normal file
View File

@ -0,0 +1,74 @@
import argparse
import os.path
import shutil
import yaml
class ConfigManager:
config = None
config_path = None
@staticmethod
def get(*args):
result = ConfigManager.config
for arg in args:
result = result[arg]
return result
@staticmethod
def load_config_with(config_file_path):
ConfigManager.config_path = config_file_path
if not os.path.exists(ConfigManager.config_path):
raise ValueError(f"Config file <{config_file_path}> does not exist")
with open(config_file_path, 'r') as file:
ConfigManager.config = yaml.safe_load(file)
@staticmethod
def backup_config_to(target_config_dir, file_name, prefix="config"):
file_name = f"{prefix}_{file_name}.yaml"
target_config_file_path = str(os.path.join(target_config_dir, file_name))
shutil.copy(ConfigManager.config_path, target_config_file_path)
@staticmethod
def load_config():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='', help='config file path')
args = parser.parse_args()
if args.config:
ConfigManager.load_config_with(args.config)
@staticmethod
def print_config(key: str = None, group: dict = None, level=0):
table_size = 80
if key and group:
value = group[key]
if type(value) is dict:
print("\t" * level + f"+-{key}:")
for k in value:
ConfigManager.print_config(k, value, level=level + 1)
else:
print("\t" * level + f"| {key}: {value}")
elif key:
ConfigManager.print_config(key, ConfigManager.config, level=level)
else:
print("+" + "-" * table_size + "+")
print(f"| Configurations in <{ConfigManager.config_path}>:")
print("+" + "-" * table_size + "+")
for key in ConfigManager.config:
ConfigManager.print_config(key, level=level + 1)
print("+" + "-" * table_size + "+")
''' ------------ Debug ------------ '''
if __name__ == "__main__":
test_args = ['--config', r'configs\train_config.yaml']
test_parser = argparse.ArgumentParser()
test_parser.add_argument('--config', type=str, default='', help='config file path')
test_args = test_parser.parse_args(test_args)
if test_args.config:
ConfigManager.load_config_with(test_args.config)
ConfigManager.print_config()
print()
pipeline = ConfigManager.get('settings', 'train', "dataset", 'batch_size')
ConfigManager.print_config('settings')
print(pipeline)

73
configs/train_config.yaml Normal file
View File

@ -0,0 +1,73 @@
# Train config file
settings:
general:
seed: 0
device: cuda
cuda_visible_devices: "0,1,2,3,4,5,6,7"
parallel: True
experiment:
name: train_experiment
root_dir: "experiments"
use_checkpoint: True
epoch: -1 # -1 stands for last epoch
max_epochs: 5000
save_checkpoint_interval: 1
test_first: True
train:
optimizer:
type: adam
lr: 0.0001
losses: # loss type : weight
gf_loss: 1.0
dataset:
name: synthetic_train_train_dataset
source: nbv1
data_type: train
ratio: 0.1
batch_size: 128
num_workers: 96
test:
batch_size: 16
frequency: 3
dataset_list:
- name: synthetic_test_train_dataset
source: nbv1
data_type: train
eval_list:
ratio: 0.00001
batch_size: 16
num_workers: 16
pipeline:
pts_encoder: pointnet
view_finder: gradient_field
datasets:
general:
data_dir: "../data"
modules:
general:
pts_channels: 3
feature_dim: 1024
per_point_feature: False
pts_encoder:
pointnet:
pointnet++:
params_name: light
pointnet++rgb:
params_name: light
target_layer: 3
rgb_feat_dim: 384
view_finder:
gradient_field:
pose_mode: rot_matrix
regression_head: Rx_Ry
sample_mode: ode
sample_repeat: 50
sampling_steps: 500
sde_mode: ve

35
datasets/dataset.py Normal file
View File

@ -0,0 +1,35 @@
from abc import ABC
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Subset
class BaseDataset(ABC, Dataset):
def __init__(self, config):
super(BaseDataset, self).__init__()
self.config = config
@staticmethod
def process_batch(batch, device):
for key in batch.keys():
if isinstance(batch[key], list):
continue
batch[key] = batch[key].to(device)
return batch
def get_loader(self, shuffle=False):
ratio = self.config["ratio"]
if ratio > 1 or ratio <= 0:
raise ValueError(
f"dataset ratio should be between (0,1], found {ratio} in {self.config['name']}"
)
subset_size = int(len(self) * ratio)
indices = np.random.permutation(len(self))[:subset_size]
subset = Subset(self, indices)
return DataLoader(
subset,
batch_size=self.config["batch_size"],
num_workers=self.config["num_workers"],
shuffle=shuffle,
)

View File

@ -0,0 +1,30 @@
import sys
import os
path = os.path.abspath(__file__)
for i in range(2):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
from datasets.dataset import BaseDataset
class DatasetFactory:
@staticmethod
def create(config) -> BaseDataset:
pass
''' ------------ Debug ------------ '''
if __name__ == "__main__":
from configs.config import ConfigManager
ConfigManager.load_config_with('/home/data/hofee/project/ActivePerception/ActivePerception/configs/server_train_config.yaml')
ConfigManager.print_config()
dataset = DatasetFactory.create(ConfigManager.get("settings", "test", "dataset_list")[1])
print(len(dataset))
data_test = dataset.__getitem__(107000)
print(data_test['src_path'])
import pickle
# with open("data_sample_new.pkl", "wb") as f:
# pickle.dump(data_test, f)

View File

@ -0,0 +1,35 @@
from annotations.stereotype import evaluation_methods
import importlib
import pkgutil
import os
package_name = os.path.dirname("evaluations")
package = importlib.import_module("evaluations")
for _, module_name, _ in pkgutil.walk_packages(package.__path__, package.__name__ + "."):
importlib.import_module(module_name)
class EvalFunctionFactory:
@staticmethod
def create(eval_type_list):
def eval_func(output, data):
temp_results = {"scalars": {}, "points": {}, "images": {}}
for eval_type in eval_type_list:
if eval_type in evaluation_methods:
result = evaluation_methods[eval_type](output, data)
for k, v in result.items():
temp_results[k].update(v)
results = {}
for k, v in temp_results.items():
if len(v) > 0:
results[k] = v
return results
return eval_func
''' ------------ Debug ------------ '''
if __name__ == "__main__":
from configs.config import ConfigManager
ConfigManager.load_config_with('../configs/local_train_config.yaml')
ConfigManager.print_config()

View File

@ -0,0 +1,12 @@
class LossFunctionFactory:
@staticmethod
def create(function_name):
raise ValueError("Unknown loss function {}".format(function_name))
''' ------------ Debug ------------ '''
if __name__ == "__main__":
from configs.config import ConfigManager
ConfigManager.load_config_with('../configs/local_train_config.yaml')
ConfigManager.print_config()

20
modules/pipeline.py Normal file
View File

@ -0,0 +1,20 @@
from torch import nn
from configs.config import ConfigManager
class Pipeline(nn.Module):
TRAIN_MODE: str = "train"
TEST_MODE: str = "test"
def __init__(self, pipeline_config):
super(Pipeline, self).__init__()
self.modules_config = ConfigManager.get("modules")
self.device = ConfigManager.get("settings", "general", "device")
def forward(self, data, mode):
pass
if __name__ == '__main__':
pass

View File

@ -0,0 +1,32 @@
import torch.optim as optim
class OptimizerFactory:
@staticmethod
def create(config, params):
optim_type = config["type"]
lr = config.get("lr", 1e-3)
if optim_type == "sgd":
return optim.SGD(
params,
lr=lr,
momentum=config.get("momentum", 0.9),
weight_decay=config.get("weight_decay", 1e-4),
)
elif optim_type == "adam":
return optim.Adam(
params,
lr=lr,
betas=config.get("betas", (0.9, 0.999)),
eps=config.get("eps", 1e-8),
)
else:
raise NotImplementedError("Unknown optimizers: {}".format(optim_type))
""" ------------ Debug ------------ """
if __name__ == "__main__":
from configs.config import ConfigManager
ConfigManager.load_config_with("../configs/local_train_config.yaml")
ConfigManager.print_config()

59
runners/runner.py Normal file
View File

@ -0,0 +1,59 @@
import os
import time
from abc import abstractmethod, ABC
import numpy as np
import torch
from configs.config import ConfigManager
class Runner(ABC):
@abstractmethod
def __init__(self, config_path):
ConfigManager.load_config_with(config_path)
ConfigManager.print_config()
seed = ConfigManager.get("settings", "general", "seed")
self.device = ConfigManager.get("settings", "general", "device")
self.cuda_visible_devices = ConfigManager.get("settings","general","cuda_visible_devices")
os.environ["CUDA_VISIBLE_DEVICES"] = self.cuda_visible_devices
self.experiments_config = ConfigManager.get("settings", "experiment")
self.experiment_path = os.path.join(self.experiments_config["root_dir"], self.experiments_config["name"])
np.random.seed(seed)
torch.manual_seed(seed)
lt = time.localtime()
self.file_name = f"{lt.tm_year}_{lt.tm_mon}_{lt.tm_mday}_{lt.tm_hour}h{lt.tm_min}m{lt.tm_sec}s"
@abstractmethod
def run(self):
pass
@abstractmethod
def load_experiment(self, backup_name=None):
if not os.path.exists(self.experiment_path):
print(f"experiments environment {self.experiments_config['name']} does not exists.")
self.create_experiment(backup_name)
else:
print(f"experiments environment {self.experiments_config['name']}")
backup_config_dir = os.path.join(str(self.experiment_path), "configs")
if not os.path.exists(backup_config_dir):
os.makedirs(backup_config_dir)
ConfigManager.backup_config_to(backup_config_dir, self.file_name, backup_name)
@abstractmethod
def create_experiment(self, backup_name=None):
print("creating experiment: " + self.experiments_config["name"])
os.makedirs(self.experiment_path)
backup_config_dir = os.path.join(str(self.experiment_path), "configs")
os.makedirs(backup_config_dir)
ConfigManager.backup_config_to(backup_config_dir, self.file_name, backup_name)
log_dir = os.path.join(str(self.experiment_path), "log")
os.makedirs(log_dir)
cache_dir = os.path.join(str(self.experiment_path), "cache")
os.makedirs(cache_dir)
def print_info(self):
table_size = 80
print("+" + "-" * table_size + "+")
print(f"| Experiment <{self.experiments_config['name']}>")
print("+" + "-" * table_size + "+")

261
runners/trainer.py Normal file
View File

@ -0,0 +1,261 @@
import os
import sys
import json
from datetime import datetime
import torch
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
path = os.path.abspath(__file__)
for i in range(2):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
from configs.config import ConfigManager
from datasets.dataset_factory import DatasetFactory
from optimizers.optimizer_factory import OptimizerFactory
from evaluations.eval_function_factory import EvalFunctionFactory
from losses.loss_function_factory import LossFunctionFactory
from modules.pipeline import Pipeline
from runners.runner import Runner
from utils.tensorboard_util import TensorboardWriter
from annotations.external_module import EXTERNAL_FREEZE_MODULES
class Trainer(Runner):
CHECKPOINT_DIR_NAME: str = 'checkpoints'
TENSORBOARD_DIR_NAME: str = 'tensorboard'
LOG_DIR_NAME: str = 'log'
def __init__(self, config_path):
super().__init__(config_path)
tensorboard_path = os.path.join(self.experiment_path, Trainer.TENSORBOARD_DIR_NAME)
''' Pipeline '''
self.pipeline_config = ConfigManager.get("settings", "pipeline")
self.parallel = ConfigManager.get("settings","general","parallel")
self.pipeline = Pipeline(self.pipeline_config)
if self.parallel and self.device == "cuda":
self.pipeline = torch.nn.DataParallel(self.pipeline)
self.pipeline = self.pipeline.to(self.device)
''' Experiment '''
self.current_epoch = 0
self.max_epochs = self.experiments_config["max_epochs"]
self.test_first = self.experiments_config["test_first"]
self.load_experiment("train")
''' Train '''
self.train_config = ConfigManager.get("settings", "train")
self.train_dataset_config = self.train_config["dataset"]
self.train_set = DatasetFactory.create(self.train_dataset_config)
self.optimizer = OptimizerFactory.create(self.train_config["optimizer"], self.pipeline.parameters())
self.train_writer = SummaryWriter(
log_dir=os.path.join(tensorboard_path, f"[train]{self.train_dataset_config['name']}"))
''' Test '''
self.test_config = ConfigManager.get("settings", "test")
self.test_dataset_config_list = self.test_config["dataset_list"]
self.test_set_list = []
self.test_writer_list = []
seen_name = set()
for test_dataset_config in self.test_dataset_config_list:
if test_dataset_config["name"] not in seen_name:
seen_name.add(test_dataset_config["name"])
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_config["name"]))
test_set = DatasetFactory.create(test_dataset_config)
test_writer = SummaryWriter(
log_dir=os.path.join(tensorboard_path, f"[test]{test_dataset_config['name']}"))
self.test_set_list.append(test_set)
self.test_writer_list.append(test_writer)
del seen_name
self.print_info()
def run(self):
save_interval = self.experiments_config["save_checkpoint_interval"]
if self.current_epoch != 0:
print("Continue training from epoch {}.".format(self.current_epoch))
else:
print("Start training from initial model.")
if self.test_first:
print("Do test first.")
self.test()
while self.current_epoch < self.max_epochs:
self.current_epoch += 1
self.train()
self.test()
if self.current_epoch % save_interval == 0:
self.save_checkpoint()
self.save_checkpoint(is_last=True)
def train(self):
self.pipeline.train()
train_set_name = self.train_dataset_config["name"]
ratio = self.train_dataset_config["ratio"]
train_loader = self.train_set.get_loader(device="cuda", shuffle=True)
loop = tqdm(enumerate(train_loader), total=len(train_loader))
loader_length = len(train_loader)
for i, data in loop:
self.train_set.process_batch(data, self.device)
loss_dict = self.train_step(data)
loop.set_description(
f'Epoch [{self.current_epoch}/{self.max_epochs}] (Train: {train_set_name}, ratio={ratio})')
loop.set_postfix(loss=loss_dict)
curr_iters = (self.current_epoch - 1) * loader_length + i
TensorboardWriter.write_tensorboard(self.train_writer, "iter", loss_dict, curr_iters)
def train_step(self, data):
self.optimizer.zero_grad()
output = self.pipeline(data, Pipeline.TRAIN_MODE)
total_loss, loss_dict = self.loss_fn(output, data)
total_loss.backward()
self.optimizer.step()
for k, v in loss_dict.items():
loss_dict[k] = round(v, 5)
return loss_dict
def loss_fn(self, output, data):
loss_config = self.train_config["losses"]
loss_dict = {}
total_loss = torch.tensor(0.0, dtype=torch.float32, device=self.device)
for key in loss_config:
weight = loss_config[key]
target_loss_fn = LossFunctionFactory.create(key)
loss = target_loss_fn(output, data)
loss_dict[key] = loss.item()
total_loss += weight * loss
loss_dict['total_loss'] = total_loss.item()
return total_loss, loss_dict
def test(self):
self.pipeline.eval()
with torch.no_grad():
for dataset_idx, test_set in enumerate(self.test_set_list):
eval_list = self.test_dataset_config_list[dataset_idx]["eval_list"]
test_set_name = self.test_dataset_config_list[dataset_idx]["name"]
ratio = self.test_dataset_config_list[dataset_idx]["ratio"]
writer = self.test_writer_list[dataset_idx]
output_list = []
data_list = []
test_loader = test_set.get_loader("cpu")
loop = tqdm(enumerate(test_loader), total=int(len(test_loader)))
for i, data in loop:
test_set.process_batch(data, self.device)
output = self.pipeline(data, Pipeline.TEST_MODE)
output_list.append(output)
data_list.append(data)
loop.set_description(
f'Epoch [{self.current_epoch}/{self.max_epochs}] (Test: {test_set_name}, ratio={ratio})')
result_dict = self.eval_fn(output_list, data_list, eval_list)
TensorboardWriter.write_tensorboard(writer, "epoch", result_dict, self.current_epoch - 1)
@staticmethod
def eval_fn(output_list, data_list, eval_list):
target_eval_fn = EvalFunctionFactory.create(eval_list)
result_dict = target_eval_fn(output_list, data_list)
return result_dict
def get_checkpoint_path(self, is_last=False):
return os.path.join(self.experiment_path, Trainer.CHECKPOINT_DIR_NAME,
"Epoch_{}.pth".format(
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
def load_checkpoint(self, is_last=False):
self.load(self.get_checkpoint_path(is_last))
print(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
if is_last:
checkpoint_root = os.path.join(self.experiment_path, Trainer.CHECKPOINT_DIR_NAME)
meta_path = os.path.join(checkpoint_root, "meta.json")
if not os.path.exists(meta_path):
raise FileNotFoundError(
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
file_path = os.path.join(checkpoint_root, "meta.json")
with open(file_path, "r") as f:
meta = json.load(f)
self.current_epoch = meta["last_epoch"]
def save_checkpoint(self, is_last=False):
self.save(self.get_checkpoint_path(is_last))
if not is_last:
print(f"Checkpoint at epoch {self.current_epoch} saved to {self.get_checkpoint_path(is_last)}")
else:
meta = {
"last_epoch": self.current_epoch,
"time": str(datetime.now())
}
checkpoint_root = os.path.join(self.experiment_path, Trainer.CHECKPOINT_DIR_NAME)
file_path = os.path.join(checkpoint_root, "meta.json")
with open(file_path, "w") as f:
json.dump(meta, f)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
if self.experiments_config["use_checkpoint"]:
self.current_epoch = self.experiments_config["epoch"]
self.load_checkpoint(is_last=(self.current_epoch == -1))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
ckpt_dir = os.path.join(str(self.experiment_path), Trainer.CHECKPOINT_DIR_NAME)
os.makedirs(ckpt_dir)
tensorboard_dir = os.path.join(str(self.experiment_path), Trainer.TENSORBOARD_DIR_NAME)
os.makedirs(tensorboard_dir)
def load(self, path):
state_dict = torch.load(path)
if self.parallel:
self.pipeline.module.load_state_dict(state_dict)
else:
self.pipeline.load_state_dict(state_dict)
def save(self, path):
if self.parallel:
state_dict = self.pipeline.module.state_dict()
else:
state_dict = self.pipeline.state_dict()
for name, module in self.pipeline.named_modules():
if module.__class__ in EXTERNAL_FREEZE_MODULES:
if name in state_dict:
del state_dict[name]
torch.save(state_dict, path)
def print_info(self):
def print_dataset(config, dataset):
print("\t name: {}".format(config["name"]))
print("\t source: {}".format(config["source"]))
print("\t data_type: {}".format(config["data_type"]))
print("\t total_length: {}".format(len(dataset)))
print("\t ratio: {}".format(config["ratio"]))
print()
super().print_info()
table_size = 70
print(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
print(self.pipeline)
print(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
print("train dataset: ")
print_dataset(self.train_dataset_config, self.train_set)
for i, test_dataset_config in enumerate(self.test_dataset_config_list):
print(f"test dataset {i}: ")
print_dataset(test_dataset_config, self.test_set_list[i])
print(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/train_config.yaml")
args = parser.parse_args()
trainer = Trainer(args.config)
trainer.run()

47
utils/tensorboard_util.py Normal file
View File

@ -0,0 +1,47 @@
import torch
class TensorboardWriter:
@staticmethod
def write_tensorboard(writer, panel, data_dict, step):
complex_dict = False
if "scalars" in data_dict:
scalar_data_dict = data_dict["scalars"]
TensorboardWriter.write_scalar_tensorboard(writer, panel, scalar_data_dict, step)
complex_dict = True
if "images" in data_dict:
image_data_dict = data_dict["images"]
TensorboardWriter.write_image_tensorboard(writer, panel, image_data_dict, step)
complex_dict = True
if "points" in data_dict:
point_data_dict = data_dict["points"]
TensorboardWriter.write_points_tensorboard(writer, panel, point_data_dict, step)
complex_dict = True
if not complex_dict:
TensorboardWriter.write_scalar_tensorboard(writer, panel, data_dict, step)
@staticmethod
def write_scalar_tensorboard(writer, panel, data_dict, step):
for key, value in data_dict.items():
if isinstance(value, dict):
writer.add_scalars(f'{panel}/{key}', value, step)
else:
writer.add_scalar(f'{panel}/{key}', value, step)
@staticmethod
def write_image_tensorboard(writer, panel, data_dict, step):
pass
@staticmethod
def write_points_tensorboard(writer, panel, data_dict, step):
for key, value in data_dict.items():
if value.shape[-1] == 3:
colors = torch.zeros_like(value)
vertices = torch.cat([value, colors], dim=-1)
elif value.shape[-1] == 6:
vertices = value
else:
raise ValueError(f'Unexpected value shape: {value.shape}')
faces = None
writer.add_mesh(f'{panel}/{key}', vertices=vertices, faces=faces, global_step=step)