solve merge conflicts
This commit is contained in:
commit
5c24d108e0
@ -90,7 +90,7 @@ pipeline:
|
||||
nbv_reconstruction_global_pts_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pose_seq_encoder: transformer_pose_seq_encoder
|
||||
pose_seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
eps: 1e-5
|
||||
@ -107,20 +107,12 @@ module:
|
||||
feature_transform: False
|
||||
|
||||
transformer_seq_encoder:
|
||||
pts_embed_dim: 1024
|
||||
pose_embed_dim: 256
|
||||
embed_dim: 1344
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
output_dim: 2048
|
||||
|
||||
transformer_pose_seq_encoder:
|
||||
pose_embed_dim: 256
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
output_dim: 1024
|
||||
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
|
@ -12,41 +12,58 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.pose_n_num_seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_n_num_seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.pts_num_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_num_encoder"])
|
||||
|
||||
self.pts_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["pts_encoder"]
|
||||
)
|
||||
self.pose_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
||||
)
|
||||
self.pts_num_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["pts_num_encoder"]
|
||||
)
|
||||
|
||||
self.transformer_seq_encoder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
|
||||
)
|
||||
self.view_finder = ComponentFactory.create(
|
||||
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
||||
)
|
||||
|
||||
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = (
|
||||
torch.rand(bs, device=gt_delta_9d.device) * (1.0 - self.eps) + self.eps
|
||||
)
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
target_score = -z * std / (std**2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
""" get std """
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(
|
||||
best_to_world_pose_9d_batch
|
||||
)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
@ -56,45 +73,69 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
"std": std,
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
|
||||
def forward_test(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(
|
||||
main_feat
|
||||
)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample
|
||||
"in_process_sample": in_process_sample,
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||
scanned_target_pts_num_batch = data['scanned_target_points_num']
|
||||
scanned_n_to_world_pose_9d_batch = data[
|
||||
"scanned_n_to_world_pose_9d"
|
||||
] # List(B): Tensor(S x 9)
|
||||
scanned_pts_mask_batch = data[
|
||||
"scanned_pts_mask"
|
||||
] # Tensor(B x N)
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
|
||||
for scanned_n_to_world_pose_9d,scanned_target_pts_num in zip(scanned_n_to_world_pose_9d_batch,scanned_target_pts_num_batch):
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
scanned_target_pts_num = scanned_target_pts_num.to(device)
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d)
|
||||
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num)
|
||||
embedding_list_batch.append(torch.cat([pose_feat_seq, pts_num_feat_seq], dim=-1))
|
||||
|
||||
main_feat = self.pose_n_num_seq_encoder.encode_sequence(embedding_list_batch)
|
||||
|
||||
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
|
||||
|
||||
|
||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||
global_scanned_feat, perpoint_scanned_feat_batch = self.pts_encoder.encode_points(
|
||||
combined_scanned_pts_batch, require_per_point_feat=True
|
||||
) # global_scanned_feat: Tensor(B x Dg), perpoint_scanned_feat: Tensor(B x N x Dl)
|
||||
|
||||
for scanned_n_to_world_pose_9d, scanned_mask, perpoint_scanned_feat in zip(
|
||||
scanned_n_to_world_pose_9d_batch,
|
||||
scanned_pts_mask_batch,
|
||||
perpoint_scanned_feat_batch,
|
||||
):
|
||||
scanned_target_pts_num = [] # List(S): Int
|
||||
partial_feat_seq = []
|
||||
|
||||
seq_len = len(scanned_n_to_world_pose_9d)
|
||||
for seq_idx in range(seq_len):
|
||||
partial_idx_in_combined_pts = scanned_mask == seq_idx # Ndarray(V), N->V idx mask
|
||||
partial_perpoint_feat = perpoint_scanned_feat[partial_idx_in_combined_pts] # Ndarray(V x Dl)
|
||||
partial_feat = torch.mean(partial_perpoint_feat, dim=0)[0] # Tensor(Dl)
|
||||
partial_feat_seq.append(partial_feat)
|
||||
scanned_target_pts_num.append(partial_perpoint_feat.shape[0])
|
||||
|
||||
scanned_target_pts_num = torch.tensor(scanned_target_pts_num, dtype=torch.int32).to(device) # Tensor(S)
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
pts_num_feat_seq = self.pts_num_encoder.encode_pts_num(scanned_target_pts_num) # Tensor(S x Dn)
|
||||
partial_feat_seq = torch.stack(partial_feat_seq) # Tensor(S x Dl)
|
||||
|
||||
seq_embedding = torch.cat([pose_feat_seq, pts_num_feat_seq, partial_feat_seq], dim=-1) # Tensor(S x (Dp+Dn+Dl))
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dn+Dl))
|
||||
|
||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
|
||||
return main_feat
|
||||
|
||||
|
@ -122,65 +122,20 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scanned_views_pts,
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
scanned_target_pts_num,
|
||||
) = ([], [], [], [])
|
||||
target_pts_num_dict = DataLoadUtil.load_target_pts_num_dict(
|
||||
self.root_dir, scene_name
|
||||
)
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||
target_pts_num = target_pts_num_dict[frame_idx]
|
||||
n_to_world_pose = cam_info["cam_to_world"]
|
||||
nR_to_world_pose = cam_info["cam_to_world_R"]
|
||||
|
||||
if self.load_from_preprocess:
|
||||
downsampled_target_point_cloud = (
|
||||
DataLoadUtil.load_from_preprocessed_pts(view_path)
|
||||
)
|
||||
else:
|
||||
cached_data = None
|
||||
if self.cache:
|
||||
cached_data = self.load_from_cache(scene_name, frame_idx)
|
||||
|
||||
if cached_data is None:
|
||||
print("load depth")
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
view_path,
|
||||
cam_info["near_plane"],
|
||||
cam_info["far_plane"],
|
||||
binocular=True,
|
||||
)
|
||||
point_cloud_L = DataLoadUtil.get_point_cloud(
|
||||
depth_L, cam_info["cam_intrinsic"], n_to_world_pose
|
||||
)["points_world"]
|
||||
point_cloud_R = DataLoadUtil.get_point_cloud(
|
||||
depth_R, cam_info["cam_intrinsic"], nR_to_world_pose
|
||||
)["points_world"]
|
||||
|
||||
point_cloud_L = PtsUtil.random_downsample_point_cloud(
|
||||
point_cloud_L, 65536
|
||||
)
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(
|
||||
point_cloud_R, 65536
|
||||
)
|
||||
overlap_points = PtsUtil.get_overlapping_points(
|
||||
point_cloud_L, point_cloud_R
|
||||
)
|
||||
downsampled_target_point_cloud = (
|
||||
PtsUtil.random_downsample_point_cloud(
|
||||
overlap_points, self.pts_num
|
||||
)
|
||||
)
|
||||
if self.cache:
|
||||
self.save_to_cache(
|
||||
scene_name, frame_idx, downsampled_target_point_cloud
|
||||
)
|
||||
else:
|
||||
downsampled_target_point_cloud = cached_data
|
||||
|
||||
|
||||
n_to_world_pose = cam_info["cam_to_world"]
|
||||
target_point_cloud = (
|
||||
DataLoadUtil.load_from_preprocessed_pts(view_path)
|
||||
)
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
|
||||
target_point_cloud, self.pts_num
|
||||
)
|
||||
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||
scanned_coverages_rate.append(coverage_rate)
|
||||
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
|
||||
@ -189,7 +144,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||
scanned_target_pts_num.append(target_pts_num)
|
||||
|
||||
|
||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||
@ -205,30 +160,33 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
)
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
voxel_downsampled_combined_scanned_pts_np = (
|
||||
PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
||||
)
|
||||
random_downsampled_combined_scanned_pts_np = (
|
||||
PtsUtil.random_downsample_point_cloud(
|
||||
voxel_downsampled_combined_scanned_pts_np, self.pts_num
|
||||
)
|
||||
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
||||
combined_scanned_views_pts, self.pts_num, require_idx=True
|
||||
)
|
||||
|
||||
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
|
||||
|
||||
start_idx = 0
|
||||
for i in range(len(scanned_views_pts)):
|
||||
end_idx = start_idx + len(scanned_views_pts[i])
|
||||
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
||||
start_idx = end_idx
|
||||
|
||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||
|
||||
|
||||
|
||||
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32),
|
||||
"combined_scanned_pts": np.asarray(
|
||||
random_downsampled_combined_scanned_pts_np, dtype=np.float32
|
||||
),
|
||||
"scanned_coverage_rate": scanned_coverages_rate,
|
||||
"scanned_n_to_world_pose_9d": np.asarray(
|
||||
scanned_n_to_world_pose, dtype=np.float32
|
||||
),
|
||||
"best_coverage_rate": nbv_coverage_rate,
|
||||
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32),
|
||||
"seq_max_coverage_rate": max_coverage_rate,
|
||||
"scene_name": scene_name,
|
||||
"scanned_target_points_num": np.asarray(
|
||||
scanned_target_pts_num, dtype=np.int32
|
||||
),
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
||||
"combined_scanned_pts": np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32), # Ndarray(N x 3)
|
||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32), # Ndarray(9)
|
||||
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
||||
"scene_name": scene_name, # String
|
||||
}
|
||||
|
||||
return data_item
|
||||
@ -239,33 +197,35 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
def get_collate_fn(self):
|
||||
def collate_fn(batch):
|
||||
collate_data = {}
|
||||
|
||||
''' ------ Varialbe Length ------ '''
|
||||
|
||||
collate_data["scanned_pts"] = [
|
||||
torch.tensor(item["scanned_pts"]) for item in batch
|
||||
]
|
||||
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||
]
|
||||
collate_data["scanned_target_points_num"] = [
|
||||
torch.tensor(item["scanned_target_points_num"]) for item in batch
|
||||
]
|
||||
|
||||
''' ------ Fixed Length ------ '''
|
||||
|
||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
|
||||
)
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
if "first_frame_to_world" in batch[0]:
|
||||
collate_data["first_frame_to_world"] = torch.stack(
|
||||
[torch.tensor(item["first_frame_to_world"]) for item in batch]
|
||||
)
|
||||
collate_data["scanned_pts_mask"] = torch.stack(
|
||||
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"first_frame_to_world",
|
||||
"combined_scanned_pts",
|
||||
"scanned_target_points_num",
|
||||
]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
|
@ -74,24 +74,12 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||
scene_name = data_item_info["scene_name"]
|
||||
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
||||
|
||||
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx)
|
||||
first_left_cam_pose = first_cam_info["cam_to_world"]
|
||||
first_right_cam_pose = first_cam_info["cam_to_world_R"]
|
||||
first_center_cam_pose = first_cam_info["cam_to_world_O"]
|
||||
if self.load_from_preprocess:
|
||||
first_downsampled_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
|
||||
else:
|
||||
first_depth_L, first_depth_R = DataLoadUtil.load_depth(first_view_path, first_cam_info['near_plane'], first_cam_info['far_plane'], binocular=True)
|
||||
|
||||
first_point_cloud_L = DataLoadUtil.get_point_cloud(first_depth_L, first_cam_info['cam_intrinsic'], first_left_cam_pose)['points_world']
|
||||
first_point_cloud_R = DataLoadUtil.get_point_cloud(first_depth_R, first_cam_info['cam_intrinsic'], first_right_cam_pose)['points_world']
|
||||
|
||||
first_point_cloud_L = PtsUtil.random_downsample_point_cloud(first_point_cloud_L, 65536)
|
||||
first_point_cloud_R = PtsUtil.random_downsample_point_cloud(first_point_cloud_R, 65536)
|
||||
first_overlap_points = PtsUtil.get_overlapping_points(first_point_cloud_L, first_point_cloud_R)
|
||||
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_overlap_points, self.pts_num)
|
||||
|
||||
first_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
|
||||
first_pts_num = first_target_point_cloud.shape[0]
|
||||
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_target_point_cloud, self.pts_num)
|
||||
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3]))
|
||||
first_to_world_trans = first_left_cam_pose[:3,3]
|
||||
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0)
|
||||
@ -102,6 +90,9 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
||||
|
||||
data_item = {
|
||||
"first_pts_num": np.asarray(
|
||||
first_pts_num, dtype=np.int32
|
||||
),
|
||||
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
|
||||
"combined_scanned_pts": np.asarray(first_downsampled_target_point_cloud,dtype=np.float32),
|
||||
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32),
|
||||
|
@ -155,7 +155,7 @@ if __name__ == "__main__":
|
||||
total = to_idx - from_idx
|
||||
for scene in scene_list[from_idx:to_idx]:
|
||||
start = time.time()
|
||||
save_scene_data(root, scene, cnt, total, "txt")
|
||||
save_scene_data(root, scene, cnt, total, file_type="npy")
|
||||
cnt+=1
|
||||
end = time.time()
|
||||
print(f"Time cost: {end-start}")
|
||||
|
@ -84,27 +84,38 @@ class StrategyGenerator(Runner):
|
||||
pts_list = []
|
||||
scan_points_indices_list = []
|
||||
non_zero_cnt = 0
|
||||
|
||||
for frame_idx in range(frame_num):
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
pts_path = os.path.join(root,scene_name, "target_pts", f"{frame_idx}.txt")
|
||||
sampled_point_cloud = np.loadtxt(pts_path)
|
||||
indices = None # ReconstructionUtil.compute_covered_scan_points(scan_points, display_table_pts)
|
||||
pts_path = os.path.join(root,scene_name, "pts", f"{frame_idx}.npy")
|
||||
idx_path = os.path.join(root,scene_name, "scan_points_indices", f"{frame_idx}.npy")
|
||||
point_cloud = np.load(pts_path)
|
||||
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, voxel_threshold)
|
||||
indices = np.load(idx_path)
|
||||
pts_list.append(sampled_point_cloud)
|
||||
|
||||
scan_points_indices_list.append(indices)
|
||||
if sampled_point_cloud.shape[0] > 0:
|
||||
non_zero_cnt += 1
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num)
|
||||
|
||||
|
||||
seq_num = min(self.seq_num, non_zero_cnt)
|
||||
init_view_list = []
|
||||
for i in range(seq_num):
|
||||
if pts_list[i].shape[0] < 100:
|
||||
continue
|
||||
init_view_list.append(i)
|
||||
idx = 0
|
||||
while len(init_view_list) < seq_num:
|
||||
if pts_list[idx].shape[0] > 100:
|
||||
init_view_list.append(idx)
|
||||
idx += 1
|
||||
|
||||
seq_idx = 0
|
||||
import time
|
||||
for init_view in init_view_list:
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "computing sequence", seq_idx, len(init_view_list))
|
||||
start = time.time()
|
||||
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list, scan_points_indices_list = scan_points_indices_list,init_view=init_view,
|
||||
threshold=voxel_threshold, soft_overlap_threshold=soft_overlap_threshold, hard_overlap_threshold= hard_overlap_threshold, scan_points_threshold=10, status_info=self.status_info)
|
||||
end = time.time()
|
||||
print(f"Time: {end-start}")
|
||||
data_pairs = self.generate_data_pairs(limited_useful_view)
|
||||
seq_save_data = {
|
||||
"data_pairs": data_pairs,
|
||||
|
@ -237,7 +237,7 @@ class DataLoadUtil:
|
||||
@staticmethod
|
||||
def load_from_preprocessed_pts(path):
|
||||
npy_path = os.path.join(
|
||||
os.path.dirname(path), "points", os.path.basename(path) + ".npy"
|
||||
os.path.dirname(path), "pts", os.path.basename(path) + ".npy"
|
||||
)
|
||||
pts = np.load(npy_path)
|
||||
return pts
|
||||
|
45
utils/pts.py
45
utils/pts.py
@ -12,12 +12,6 @@ class PtsUtil:
|
||||
downsampled_pc = o3d_pc.voxel_down_sample(voxel_size)
|
||||
return np.asarray(downsampled_pc.points)
|
||||
|
||||
@staticmethod
|
||||
def transform_point_cloud(points, pose_mat):
|
||||
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
||||
points_h = np.dot(pose_mat, points_h.T).T
|
||||
return points_h[:, :3]
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
if point_cloud.shape[0] == 0:
|
||||
@ -29,6 +23,27 @@ class PtsUtil:
|
||||
return point_cloud[idx], idx
|
||||
return point_cloud[idx]
|
||||
|
||||
@staticmethod
|
||||
def fps_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
N = point_cloud.shape[0]
|
||||
mask = np.zeros(N, dtype=bool)
|
||||
|
||||
sampled_indices = np.zeros(num_points, dtype=int)
|
||||
sampled_indices[0] = np.random.randint(0, N)
|
||||
distances = np.linalg.norm(point_cloud - point_cloud[sampled_indices[0]], axis=1)
|
||||
for i in range(1, num_points):
|
||||
farthest_index = np.argmax(distances)
|
||||
sampled_indices[i] = farthest_index
|
||||
mask[farthest_index] = True
|
||||
|
||||
new_distances = np.linalg.norm(point_cloud - point_cloud[farthest_index], axis=1)
|
||||
distances = np.minimum(distances, new_distances)
|
||||
|
||||
sampled_points = point_cloud[sampled_indices]
|
||||
if require_idx:
|
||||
return sampled_points, sampled_indices
|
||||
return sampled_points
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud_tensor(point_cloud, num_points):
|
||||
idx = torch.randint(0, len(point_cloud), (num_points,))
|
||||
@ -40,6 +55,12 @@ class PtsUtil:
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels
|
||||
|
||||
@staticmethod
|
||||
def transform_point_cloud(points, pose_mat):
|
||||
points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1)
|
||||
points_h = np.dot(pose_mat, points_h.T).T
|
||||
return points_h[:, :3]
|
||||
|
||||
@staticmethod
|
||||
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005, require_idx=False):
|
||||
voxels_L, indices_L = PtsUtil.voxelize_points(point_cloud_L, voxel_size)
|
||||
@ -56,18 +77,6 @@ class PtsUtil:
|
||||
return overlapping_points, mask_L
|
||||
return overlapping_points
|
||||
|
||||
@staticmethod
|
||||
def new_filter_points(points, normals, cam_pose, theta=75, require_idx=False):
|
||||
camera_axis = -cam_pose[:3, 2]
|
||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
||||
cos_theta = np.dot(normals_normalized, camera_axis)
|
||||
theta_rad = np.deg2rad(theta)
|
||||
idx = cos_theta > np.cos(theta_rad)
|
||||
filtered_points= points[idx]
|
||||
if require_idx:
|
||||
return filtered_points, idx
|
||||
return filtered_points
|
||||
|
||||
@staticmethod
|
||||
def filter_points(points, points_normals, cam_pose, voxel_size=0.002, theta=45, z_range=(0.2, 0.45)):
|
||||
|
||||
|
@ -8,9 +8,9 @@ class ReconstructionUtil:
|
||||
def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01):
|
||||
kdtree = cKDTree(combined_point_cloud)
|
||||
distances, _ = kdtree.query(target_point_cloud)
|
||||
covered_points = np.sum(distances < threshold*2)
|
||||
coverage_rate = covered_points / target_point_cloud.shape[0]
|
||||
return coverage_rate
|
||||
covered_points_num = np.sum(distances < threshold)
|
||||
coverage_rate = covered_points_num / target_point_cloud.shape[0]
|
||||
return coverage_rate, covered_points_num
|
||||
|
||||
@staticmethod
|
||||
def compute_overlap_rate(new_point_cloud, combined_point_cloud, threshold=0.01):
|
||||
@ -22,29 +22,7 @@ class ReconstructionUtil:
|
||||
else:
|
||||
overlap_rate = overlapping_points / new_point_cloud.shape[0]
|
||||
return overlap_rate
|
||||
|
||||
@staticmethod
|
||||
def combine_point_with_view_sequence(point_list, view_sequence):
|
||||
selected_views = []
|
||||
for view_index, _ in view_sequence:
|
||||
selected_views.append(point_list[view_index])
|
||||
return np.vstack(selected_views)
|
||||
|
||||
@staticmethod
|
||||
def compute_next_view_coverage_list(views, combined_point_cloud, target_point_cloud, threshold=0.01):
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
current_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold)
|
||||
|
||||
for view_index, view in enumerate(views):
|
||||
candidate_views = combined_point_cloud + [view]
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(candidate_views, threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
return best_view, best_coverage_increase
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_new_added_points(old_combined_pts, new_pts, threshold=0.005):
|
||||
@ -60,54 +38,74 @@ class ReconstructionUtil:
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, scan_points_indices_list, threshold=0.01, soft_overlap_threshold=0.5, hard_overlap_threshold=0.7, init_view = 0, scan_points_threshold=5, status_info=None):
|
||||
selected_views = [point_cloud_list[init_view]]
|
||||
combined_point_cloud = np.vstack(selected_views)
|
||||
selected_views = [init_view]
|
||||
combined_point_cloud = point_cloud_list[init_view]
|
||||
history_indices = [scan_points_indices_list[init_view]]
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
|
||||
max_rec_pts = np.vstack(point_cloud_list)
|
||||
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
||||
|
||||
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||
max_real_rec_pts_coverage, _ = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
||||
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, combined_point_cloud, threshold)
|
||||
current_coverage = new_coverage
|
||||
current_covered_num = new_covered_num
|
||||
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = [(init_view, current_coverage)]
|
||||
cnt_processed_view = 0
|
||||
remaining_views.remove(init_view)
|
||||
|
||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||
|
||||
import time
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
best_combined_point_cloud = None
|
||||
best_covered_num = 0
|
||||
|
||||
for view_index in remaining_views:
|
||||
if point_cloud_list[view_index].shape[0] == 0:
|
||||
continue
|
||||
|
||||
if selected_views:
|
||||
new_scan_points_indices = scan_points_indices_list[view_index]
|
||||
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
overlap_threshold = hard_overlap_threshold
|
||||
else:
|
||||
overlap_threshold = soft_overlap_threshold
|
||||
|
||||
combined_old_point_cloud = np.vstack(selected_views)
|
||||
down_sampled_old_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_old_point_cloud,threshold)
|
||||
down_sampled_new_view_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud_list[view_index],threshold)
|
||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(down_sampled_new_view_point_cloud,down_sampled_old_point_cloud, threshold)
|
||||
start = time.time()
|
||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(point_cloud_list[view_index],combined_point_cloud, threshold)
|
||||
end = time.time()
|
||||
# print(f"overlap_rate Time: {end-start}")
|
||||
if overlap_rate < overlap_threshold:
|
||||
continue
|
||||
|
||||
candidate_views = selected_views + [point_cloud_list[view_index]]
|
||||
combined_point_cloud = np.vstack(candidate_views)
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
|
||||
start = time.time()
|
||||
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
||||
new_downsampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold)
|
||||
new_coverage, new_covered_num = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, threshold)
|
||||
end = time.time()
|
||||
#print(f"compute_coverage_rate Time: {end-start}")
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
best_covered_num = new_covered_num
|
||||
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
||||
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=3e-3:
|
||||
if best_coverage_increase <=1e-3 or best_covered_num - current_covered_num <= 5:
|
||||
break
|
||||
selected_views.append(point_cloud_list[best_view])
|
||||
|
||||
selected_views.append(best_view)
|
||||
best_rec_pts_num = best_combined_point_cloud.shape[0]
|
||||
print(f"Current rec pts num: {curr_rec_pts_num}, Best rec pts num: {best_rec_pts_num}, Best cover pts: {best_covered_num}, Max rec pts num: {max_rec_pts_num}")
|
||||
print(f"Current coverage: {current_coverage}, Best coverage increase: {best_coverage_increase}, Max Real coverage: {max_real_rec_pts_coverage}")
|
||||
current_covered_num = best_covered_num
|
||||
curr_rec_pts_num = best_rec_pts_num
|
||||
combined_point_cloud = best_combined_point_cloud
|
||||
remaining_views.remove(best_view)
|
||||
history_indices.append(scan_points_indices_list[best_view])
|
||||
current_coverage += best_coverage_increase
|
||||
@ -123,12 +121,15 @@ class ReconstructionUtil:
|
||||
|
||||
else:
|
||||
break
|
||||
# ----- Debug Trace ----- #
|
||||
import ipdb; ipdb.set_trace()
|
||||
# ------------------------ #
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views, down_sampled_combined_point_cloud
|
||||
return view_sequence, remaining_views, combined_point_cloud
|
||||
|
||||
|
||||
@staticmethod
|
||||
|
Loading…
x
Reference in New Issue
Block a user