fix bug for training

This commit is contained in:
hofee 2024-09-12 15:11:09 +08:00
parent a79ca7749d
commit 4c69ed777b
15 changed files with 201 additions and 120 deletions

View File

@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
class DataSplitApp:
@staticmethod
def start():
DataSpliter(r"configs\split_dataset_config.yaml").run()
DataSpliter("configs/split_dataset_config.yaml").run()

View File

@ -1,8 +1,8 @@
from PytorchBoot.application import PytorchBootApplication
from runners.strategy_generator import StrategyGenerator
from PytorchBoot.runners.trainer import DefaultTrainer
@PytorchBootApplication("train")
class TrainApp:
@staticmethod
def start():
StrategyGenerator(r"configs\train_config.yaml").run()
DefaultTrainer("configs/train_config.yaml").run()

View File

@ -10,13 +10,13 @@ runner:
root_dir: "experiments"
split:
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
root_dir: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/scenes"
type: "unseen_instance" # "unseen_category"
datasets:
OmniObject3d_train:
path: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt"
ratio: 0.5
path: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt"
ratio: 0.9
OmniObject3d_test:
path: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_test.txt"
ratio: 0.5
path: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_test.txt"
ratio: 0.1

View File

@ -18,12 +18,14 @@ runner:
save_points: False
save_best_combined_points: True
save_mesh: True
overwrite: False
dataset_list:
- OmniObject3d
datasets:
OmniObject3d:
root_dir: "/media/hofee/data/project/python/nbv_reconstruction/nbv_rec_visualize/data/sample"
#"/media/hofee/data/data/temp_output"
root_dir: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/scenes"
model_dir: "/media/hofee/data/data/scaled_object_meshes"
#output_dir: "/media/hofee/data/data/label_output"

View File

@ -2,15 +2,16 @@
runner:
general:
seed: 0
device: cpu
device: cuda
cuda_visible_devices: "0,1,2,3,4,5,6,7"
parallel: False
experiment:
name: debug
name: test_overfit
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
max_epochs: 5
max_epochs: 5000
save_checkpoint_interval: 1
test_first: False
@ -19,34 +20,43 @@ runner:
type: Adam
lr: 0.0001
losses:
- mse_loss
- gf_loss
dataset: OmniObject3d_train
test:
frequency: 3 # test frequency
dataset_list:
- OmniObject3d_train
- OmniObject3d_test
pipeline: nbv_reconstruction_pipeline
datasets:
dataset:
OmniObject3d_train:
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
split_file: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt"
root_dir: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/scenes"
source: nbv_reconstruction_dataset
split_file: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt"
ratio: 1.0
batch_size: 1
num_workers: 12
pts_num: 2048
pts_num: 4096
OmniObject3d_test:
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
split_file: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_test.txt"
root_dir: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/scenes"
source: nbv_reconstruction_dataset
split_file: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt"
eval_list:
- pose_diff
ratio: 1.0
ratio: 0.1
batch_size: 1
num_workers: 1
pts_num: 2048
pts_num: 4096
pipeline:
nbv_reconstruction_pipeline:
pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
module:
pointnet_encoder:
@ -58,13 +68,15 @@ module:
transformer_seq_encoder:
pts_embed_dim: 1024
pose_embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
max_seq_len: 30
output_dim: 2048
num_heads: 2 # 4
ffn_dim: 128 # 256
num_layers: 2 # 3
output_dim: 1024 # 2048
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 1024 # 2048
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False
@ -74,4 +86,10 @@ module:
pose_encoder:
pose_dim: 9
output_dim: 256
out_dim: 256
loss_function:
gf_loss:
evaluation_method:
pose_diff:

View File

@ -9,10 +9,10 @@ runner:
generate:
object_dir: /media/hofee/data/data/scaled_object_meshes
table_model_path: /media/hofee/data/data/others/table.obj
output_dir: /media/hofee/data/data/temp_output
output_dir: /media/hofee/repository/nbv_reconstruction_data_512
binocular_vision: true
plane_size: 10
max_views: 256
max_views: 512
min_views: 64
max_diag: 0.7
min_diag: 0.1

View File

@ -1,10 +1,10 @@
import numpy as np
from PytorchBoot.dataset import BaseDataset
import PytorchBoot.stereotype as stereotype
from torch.nn.utils.rnn import pad_sequence
import torch
import sys
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
@ -56,18 +56,25 @@ class NBVReconstructionDataset(BaseDataset):
scene_name = data_item_info["scene_name"]
scanned_views_pts, scanned_coverages_rate, scanned_n_to_1_pose = [], [], []
first_frame_idx = scanned_views[0][0]
first_frame_to_world = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx))["cam_to_world"]
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
first_frame_to_world = first_cam_info["cam_to_world"]
for view in scanned_views:
frame_idx = view[0]
coverage_rate = view[1]
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
depth = DataLoadUtil.load_depth(view_path)
cam_info = DataLoadUtil.load_cam_info(view_path)
mask = DataLoadUtil.load_seg(view_path)
frame_curr_to_world = cam_info["cam_to_world"]
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), frame_curr_to_world)
target_point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info["cam_intrinsic"], n_to_1_pose, mask)["points_world"]
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(target_point_cloud, self.pts_num)
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
n_to_world_pose = cam_info["cam_to_world"]
nR_to_world_pose = cam_info["cam_to_world_R"]
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), n_to_world_pose)
nR_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), nR_to_world_pose)
depth_L, depth_R = DataLoadUtil.load_depth(view_path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
point_cloud_L = DataLoadUtil.get_point_cloud(depth_L, cam_info['cam_intrinsic'], n_to_1_pose)['points_world']
point_cloud_R = DataLoadUtil.get_point_cloud(depth_R, cam_info['cam_intrinsic'], nR_to_1_pose)['points_world']
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 65536)
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(overlap_points, self.pts_num)
scanned_views_pts.append(downsampled_target_point_cloud)
scanned_coverages_rate.append(coverage_rate)
n_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(n_to_1_pose[:3,:3]))
@ -86,10 +93,10 @@ class NBVReconstructionDataset(BaseDataset):
data_item = {
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
"scanned_coverage_rate": scanned_coverages_rate,
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
"best_coverage_rate": nbv_coverage_rate,
"best_to_1_pose_9d": best_to_1_9d,
"best_to_1_pose_9d": np.asarray(best_to_1_9d,dtype=np.float32),
"max_coverage_rate": max_coverage_rate,
"scene_name": scene_name
}
@ -101,23 +108,14 @@ class NBVReconstructionDataset(BaseDataset):
def get_collate_fn(self):
def collate_fn(batch):
scanned_pts = [item['scanned_pts'] for item in batch]
scanned_n_to_1_pose_9d = [item['scanned_n_to_1_pose_9d'] for item in batch]
rest = {}
collate_data = {}
collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch]
collate_data["scanned_n_to_1_pose_9d"] = [torch.tensor(item['scanned_n_to_1_pose_9d']) for item in batch]
collate_data["best_to_1_pose_9d"] = torch.stack([torch.tensor(item['best_to_1_pose_9d']) for item in batch])
for key in batch[0].keys():
if key in ['scanned_pts', 'scanned_n_to_1_pose_9d']:
continue
if isinstance(batch[0][key], torch.Tensor):
rest[key] = torch.stack([item[key] for item in batch])
elif isinstance(batch[0][key], str):
rest[key] = [item[key] for item in batch]
else:
rest[key] = [item[key] for item in batch]
return {
'scanned_pts': scanned_pts,
'scanned_n_to_1_pose_9d': scanned_n_to_1_pose_9d,
**rest
}
if key not in ["scanned_pts", "scanned_n_to_1_pose_9d", "best_to_1_pose_9d"]:
collate_data[key] = [item[key] for item in batch]
return collate_data
return collate_fn
if __name__ == "__main__":
@ -126,36 +124,48 @@ if __name__ == "__main__":
torch.manual_seed(seed)
np.random.seed(seed)
config = {
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\data\\sample",
"split_file": "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt",
"root_dir": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/scenes",
"split_file": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt",
"ratio": 0.5,
"batch_size": 2,
"num_workers": 0,
"pts_num": 2048
"pts_num": 32684
}
ds = NBVReconstructionDataset(config)
print(len(ds))
#ds.__getitem__(10)
dl = ds.get_loader(shuffle=True)
for idx, data in enumerate(dl):
cnt=0
print(data["scene_name"])
print(data["scanned_coverage_rate"])
print(data["best_coverage_rate"])
for pts in data["scanned_pts"][0]:
#np.savetxt(f"pts_{cnt}.txt", pts)
cnt+=1
#np.savetxt("best_pts.txt", best_pts)
for key, value in data.items():
if isinstance(value, torch.Tensor):
print(key, ":" ,value.shape)
else:
print(key, ":" ,len(value))
if key == "scanned_n_to_1_pose_9d":
for val in value:
print(val.shape)
if key == "scanned_pts":
for val in value:
print(val.shape)
data = ds.process_batch(data, "cuda:0")
print(data)
break
#
# for idx, data in enumerate(dl):
# cnt=0
# print(data["scene_name"])
# print(data["scanned_coverage_rate"])
# print(data["best_coverage_rate"])
# for pts in data["scanned_pts"][0]:
# #np.savetxt(f"pts_{cnt}.txt", pts)
# cnt+=1
# #np.savetxt("best_pts.txt", best_pts)
# for key, value in data.items():
# if isinstance(value, torch.Tensor):
# print(key, ":" ,value.shape)
# else:
# print(key, ":" ,len(value))
# if key == "scanned_n_to_1_pose_9d":
# for val in value:
# print(val.shape)
# if key == "scanned_pts":
# print("scanned_pts")
# for val in value:
# print(val.shape)
# cnt = 0
# for v in val:
# import ipdb;ipdb.set_trace()
# np.savetxt(f"pts_{cnt}.txt", v)
# cnt+=1
print()
# print()

View File

@ -14,12 +14,11 @@ class NBVReconstructionPipeline(nn.Module):
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["pose_encoder"])
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["seq_encoder"])
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, config["view_finder"])
self.eps = 1e-5
def forward(self, data):
mode = data["mode"]
# ----- Debug Trace ----- #
import ipdb; ipdb.set_trace()
# ------------------------ #
if mode == namespace.Mode.TRAIN:
return self.forward_train(data)
elif mode == namespace.Mode.TEST:
@ -27,29 +26,22 @@ class NBVReconstructionPipeline(nn.Module):
else:
Log.error("Unknown mode: {}".format(mode), True)
def pertube_data(self, gt_delta_rot_6d):
bs = gt_delta_rot_6d.shape[0]
random_t = torch.rand(bs, device=self.device) * (1. - self.eps) + self.eps
def pertube_data(self, gt_delta_9d):
bs = gt_delta_9d.shape[0]
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
random_t = random_t.unsqueeze(-1)
mu, std = self.view_finder.marginal_prob(gt_delta_rot_6d, random_t)
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
std = std.view(-1, 1)
z = torch.randn_like(gt_delta_rot_6d)
z = torch.randn_like(gt_delta_9d)
perturbed_x = mu + z * std
target_score = - z * std / (std ** 2)
return perturbed_x, random_t, target_score, std
def forward_train(self, data):
pts_list = data['pts_list']
pose_list = data['pose_list']
gt_rot_6d = data["nbv_cam_pose"]
pts_feat_list = []
pose_feat_list = []
for pts,pose in zip(pts_list,pose_list):
pts_feat_list.append(self.pts_encoder.encode_points(pts))
pose_feat_list.append(self.pose_encoder.encode_pose(pose))
seq_feat = self.seq_encoder.encode_sequence(pts_feat_list, pose_feat_list)
seq_feat = self.get_seq_feat(data)
''' get std '''
perturbed_x, random_t, target_score, std = self.pertube_data(gt_rot_6d)
best_to_1_pose_9d_batch = data["best_to_1_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_1_pose_9d_batch)
input_data = {
"sampled_pose": perturbed_x,
"t": random_t,
@ -64,14 +56,7 @@ class NBVReconstructionPipeline(nn.Module):
return output
def forward_test(self,data):
pts_list = data['pts_list']
pose_list = data['pose_list']
pts_feat_list = []
pose_feat_list = []
for pts,pose in zip(pts_list,pose_list):
pts_feat_list.append(self.pts_encoder.encode_points(pts))
pose_feat_list.append(self.pose_encoder.encode_pose(pose))
seq_feat = self.seq_encoder.encode_sequence(pts_feat_list, pose_feat_list)
seq_feat = self.get_seq_feat(data)
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(seq_feat)
result = {
"pred_pose_9d": estimated_delta_rot_9d,
@ -79,4 +64,19 @@ class NBVReconstructionPipeline(nn.Module):
}
return result
def get_seq_feat(self, data):
scanned_pts_batch = data['scanned_pts']
scanned_n_to_1_pose_9d_batch = data['scanned_n_to_1_pose_9d']
best_to_1_pose_9d_batch = data["best_to_1_pose_9d"]
pts_feat_seq_list = []
pose_feat_seq_list = []
for scanned_pts,scanned_n_to_1_pose_9d in zip(scanned_pts_batch,scanned_n_to_1_pose_9d_batch):
print(scanned_n_to_1_pose_9d.shape)
scanned_pts = scanned_pts.to(best_to_1_pose_9d_batch.device)
scanned_n_to_1_pose_9d = scanned_n_to_1_pose_9d.to(best_to_1_pose_9d_batch.device)
pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_1_pose_9d))
seq_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list)
return seq_feat

View File

@ -33,19 +33,22 @@ class GradientFieldViewFinder(nn.Module):
pose_dim = PoseUtil.get_pose_dim(self.pose_mode)
self.prior_fn, self.marginal_prob_fn, self.sde_fn, self.sampling_eps, self.T = flib.init_sde(config["sde_mode"])
self.sampling_steps = config["sampling_steps"]
self.t_feat_dim = config["t_feat_dim"]
self.pose_feat_dim = config["pose_feat_dim"]
self.main_feat_dim = config["main_feat_dim"]
''' encode pose '''
self.pose_encoder = nn.Sequential(
nn.Linear(pose_dim, 256),
nn.Linear(pose_dim, self.pose_feat_dim ),
self.act,
nn.Linear(256, 256),
nn.Linear(self.pose_feat_dim , self.pose_feat_dim ),
self.act,
)
''' encode t '''
self.t_encoder = nn.Sequential(
mlib.GaussianFourierProjection(embed_dim=128),
nn.Linear(128, 128),
mlib.GaussianFourierProjection(embed_dim=self.t_feat_dim ),
nn.Linear(self.t_feat_dim , self.t_feat_dim ),
self.act,
)
@ -56,18 +59,18 @@ class GradientFieldViewFinder(nn.Module):
if not self.per_point_feature:
''' rotation_x_axis regress head '''
self.fusion_tail_rot_x = nn.Sequential(
nn.Linear(128 + 256 + 2048, 256),
nn.Linear(self.t_feat_dim + self.pose_feat_dim + self.main_feat_dim, 256),
self.act,
zero_module(nn.Linear(256, 3)),
)
self.fusion_tail_rot_y = nn.Sequential(
nn.Linear(128 + 256 + 2048, 256),
nn.Linear(self.t_feat_dim + self.pose_feat_dim + self.main_feat_dim, 256),
self.act,
zero_module(nn.Linear(256, 3)),
)
''' tranalation regress head '''
self.fusion_tail_trans = nn.Sequential(
nn.Linear(128 + 256 + 2048, 256),
nn.Linear(self.t_feat_dim + self.pose_feat_dim + self.main_feat_dim, 256),
self.act,
zero_module(nn.Linear(256, 3)),
)

View File

@ -54,6 +54,7 @@ class PointNetEncoder(nn.Module):
def encode_points(self, pts):
pts = pts.transpose(2, 1)
if not self.global_feat:
pts_feature = self(pts).transpose(2, 1)
else:
@ -98,11 +99,24 @@ class STNkd(nn.Module):
if __name__ == "__main__":
sim_data = Variable(torch.rand(32, 2500, 3))
pointnet_global = PointNetEncoder(global_feat=True)
config = {
"in_dim": 3,
"out_dim": 1024,
"global_feat": True,
"feature_transform": False
}
pointnet_global = PointNetEncoder(config)
out = pointnet_global.encode_points(sim_data)
print("global feat", out.size())
pointnet = PointNetEncoder(global_feat=False)
config = {
"in_dim": 3,
"out_dim": 1024,
"global_feat": False,
"feature_transform": False
}
pointnet = PointNetEncoder(config)
out = pointnet.encode_points(sim_data)
print("point feat", out.size())

View File

@ -38,7 +38,7 @@ class TransformerSequenceEncoder(nn.Module):
# Prepare mask for padding
max_len = max(lengths)
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool)
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool).to(combined_tensor.device)
# Transformer encoding
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)

View File

@ -26,6 +26,7 @@ class StrategyGenerator(Runner):
self.save_best_combined_pts = ConfigManager.get("runner", "generate", "save_best_combined_points")
self.save_mesh = ConfigManager.get("runner", "generate", "save_mesh")
self.filter_degree = ConfigManager.get("runner", "generate", "filter_degree")
self.overwrite = ConfigManager.get("runner", "generate", "overwrite")
@ -44,6 +45,14 @@ class StrategyGenerator(Runner):
for scene_name in scene_name_list:
Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}")
status_manager.set_progress("generate", "strategy_generator", "scene", cnt, total)
diag = DataLoadUtil.get_bbox_diag(model_dir, scene_name)
voxel_threshold = diag*0.02
status_manager.set_status("generate", "strategy_generator", "voxel_threshold", voxel_threshold)
output_label_path = DataLoadUtil.get_label_path(root_dir, scene_name)
if os.path.exists(output_label_path) and not self.overwrite:
Log.info(f"Scene <{scene_name}> Already Exists, Skip")
cnt += 1
continue
self.generate_sequence(root_dir, model_dir, scene_name,voxel_threshold, overlap_threshold)
cnt += 1
status_manager.set_progress("generate", "strategy_generator", "scene", total, total)

View File

@ -45,6 +45,15 @@ class DataLoadUtil:
mesh.apply_transform(world_object_pose)
return mesh
@staticmethod
def get_bbox_diag(model_dir, object_name):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
mesh = trimesh.load(model_path)
bbox = mesh.bounding_box.extents
diagonal_length = np.linalg.norm(bbox)
return diagonal_length
@staticmethod
def save_mesh_at(model_dir, output_dir, object_name, scene_name, world_object_pose):
mesh = DataLoadUtil.load_mesh_at(model_dir, object_name, world_object_pose)
@ -192,6 +201,24 @@ class DataLoadUtil:
"points_world": target_points_world,
"points_camera": target_points_camera
}
@staticmethod
def get_point_cloud(depth, cam_intrinsic, cam_extrinsic):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
return {
"points_world": points_world,
"points_camera": points_camera
}
@staticmethod
def get_target_point_cloud_world_from_path(path, binocular=False, random_downsample_N=65536, voxel_size = 0.005, target_mask_label=(0,255,0,255)):

View File

@ -5,7 +5,6 @@ class PtsUtil:
@staticmethod
def voxel_downsample_point_cloud(point_cloud, voxel_size=0.005):
print("voxel_size: ", voxel_size)
o3d_pc = o3d.geometry.PointCloud()
o3d_pc.points = o3d.utility.Vector3dVector(point_cloud)
downsampled_pc = o3d_pc.voxel_down_sample(voxel_size)

View File

@ -6,7 +6,6 @@ class ReconstructionUtil:
@staticmethod
def compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold=0.01):
print("threshold", threshold)
kdtree = cKDTree(combined_point_cloud)
distances, _ = kdtree.query(target_point_cloud)
covered_points = np.sum(distances < threshold)