add multi seq training
This commit is contained in:
parent
6cdff9c83f
commit
3c4077ec4f
@ -5,5 +5,5 @@ from runners.strategy_generator import StrategyGenerator
|
||||
class DataGenerateApp:
|
||||
@staticmethod
|
||||
def start():
|
||||
StrategyGenerator("configs/strategy_generate_config.yaml").run()
|
||||
StrategyGenerator("configs/local/strategy_generate_config.yaml").run()
|
||||
|
@ -13,4 +13,4 @@ class ViewGenerateApp:
|
||||
Trainer("path_to_your_train_config").run()
|
||||
Evaluator("path_to_your_eval_config").run()
|
||||
'''
|
||||
ViewGenerator("./configs/view_generate_config.yaml").run()
|
||||
ViewGenerator("configs/local/view_generate_config.yaml").run()
|
||||
|
@ -8,19 +8,19 @@ runner:
|
||||
experiment:
|
||||
name: local_eval
|
||||
root_dir: "experiments"
|
||||
epoch: 600 # -1 stands for last epoch
|
||||
epoch: 555 # -1 stands for last epoch
|
||||
|
||||
test:
|
||||
dataset_list:
|
||||
- OmniObject3d_train
|
||||
|
||||
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
|
||||
output_dir: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/inference_result"
|
||||
output_dir: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/inference_result2"
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
root_dir: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/scenes"
|
||||
root_dir: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/sample_preprocessed_scenes"
|
||||
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||
source: seq_nbv_reconstruction_dataset
|
||||
split_file: "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt"
|
||||
@ -30,6 +30,7 @@ dataset:
|
||||
batch_size: 1
|
||||
num_workers: 12
|
||||
pts_num: 4096
|
||||
load_from_preprocess: True
|
||||
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
|
@ -15,17 +15,19 @@ runner:
|
||||
overlap_threshold: 0.5
|
||||
filter_degree: 75
|
||||
to_specified_dir: True # if True, output_dir is used, otherwise, root_dir is used
|
||||
save_points: False
|
||||
save_best_combined_points: True
|
||||
save_points: True
|
||||
load_points: True
|
||||
save_best_combined_points: False
|
||||
save_mesh: True
|
||||
overwrite: False
|
||||
seq_num: 50
|
||||
dataset_list:
|
||||
- OmniObject3d
|
||||
|
||||
datasets:
|
||||
OmniObject3d:
|
||||
#"/media/hofee/data/data/temp_output"
|
||||
root_dir: "/media/hofee/repository/nbv_reconstruction_data_512"
|
||||
root_dir: "/media/hofee/data/data/sample_data/view_data"
|
||||
model_dir: "/media/hofee/data/data/scaled_object_meshes"
|
||||
#output_dir: "/media/hofee/data/data/label_output"
|
||||
|
||||
|
@ -9,7 +9,7 @@ runner:
|
||||
generate:
|
||||
object_dir: /media/hofee/data/data/scaled_object_meshes
|
||||
table_model_path: /media/hofee/data/data/others/table.obj
|
||||
output_dir: /media/hofee/repository/nbv_reconstruction_data_512
|
||||
output_dir: /media/hofee/repository/new_nbv_reconstruction_data_512
|
||||
binocular_vision: true
|
||||
plane_size: 10
|
||||
max_views: 512
|
||||
|
@ -102,9 +102,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||
scene_name = data_item_info["scene_name"]
|
||||
scanned_views_pts, scanned_coverages_rate, scanned_n_to_world_pose = [], [], []
|
||||
first_frame_idx = scanned_views[0][0]
|
||||
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
||||
first_frame_to_world = first_cam_info["cam_to_world"]
|
||||
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
|
@ -28,6 +28,7 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
|
||||
self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
self.load_from_preprocess = config.get("load_from_preprocess", False)
|
||||
|
||||
|
||||
def load_scene_name_list(self):
|
||||
@ -38,10 +39,30 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
scene_name_list.append(scene_name)
|
||||
return scene_name_list
|
||||
|
||||
def get_datalist_new(self):
|
||||
datalist = []
|
||||
for scene_name in self.scene_name_list:
|
||||
label_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||
for i in range(label_num):
|
||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, i)
|
||||
label_data = DataLoadUtil.load_label(label_path)
|
||||
best_seq = label_data["best_sequence"]
|
||||
max_coverage_rate = label_data["max_coverage_rate"]
|
||||
first_frame = best_seq[0]
|
||||
best_seq_len = len(best_seq)
|
||||
datalist.append({
|
||||
"scene_name": scene_name,
|
||||
"first_frame": first_frame,
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
"best_seq_len": best_seq_len,
|
||||
"label_idx": i,
|
||||
})
|
||||
return datalist
|
||||
|
||||
def get_datalist(self):
|
||||
datalist = []
|
||||
for scene_name in self.scene_name_list:
|
||||
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name)
|
||||
label_path = DataLoadUtil.get_label_path_old(self.root_dir, scene_name)
|
||||
label_data = DataLoadUtil.load_label(label_path)
|
||||
best_seq = label_data["best_sequence"]
|
||||
max_coverage_rate = label_data["max_coverage_rate"]
|
||||
@ -52,8 +73,9 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
"first_frame": first_frame,
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
"best_seq_len": best_seq_len,
|
||||
"best_seq": best_seq,
|
||||
})
|
||||
return datalist[5:]
|
||||
return datalist
|
||||
|
||||
def __getitem__(self, index):
|
||||
data_item_info = self.datalist[index]
|
||||
@ -62,27 +84,27 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
max_coverage_rate = data_item_info["max_coverage_rate"]
|
||||
scene_name = data_item_info["scene_name"]
|
||||
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
||||
first_frame_to_world = first_cam_info["cam_to_world"]
|
||||
|
||||
first_view_path = DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx)
|
||||
first_left_cam_pose = first_cam_info["cam_to_world"]
|
||||
first_right_cam_pose = first_cam_info["cam_to_world_R"]
|
||||
first_center_cam_pose = first_cam_info["cam_to_world_O"]
|
||||
|
||||
first_depth_L, first_depth_R = DataLoadUtil.load_depth(first_view_path, first_cam_info['near_plane'], first_cam_info['far_plane'], binocular=True)
|
||||
first_L_to_L_pose = np.eye(4)
|
||||
first_R_to_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_right_cam_pose)
|
||||
first_point_cloud_L = DataLoadUtil.get_point_cloud(first_depth_L, first_cam_info['cam_intrinsic'], first_L_to_L_pose)['points_world']
|
||||
first_point_cloud_R = DataLoadUtil.get_point_cloud(first_depth_R, first_cam_info['cam_intrinsic'], first_R_to_L_pose)['points_world']
|
||||
|
||||
first_point_cloud_L = PtsUtil.random_downsample_point_cloud(first_point_cloud_L, 65536)
|
||||
first_point_cloud_R = PtsUtil.random_downsample_point_cloud(first_point_cloud_R, 65536)
|
||||
first_overlap_points = DataLoadUtil.get_overlapping_points(first_point_cloud_L, first_point_cloud_R)
|
||||
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_overlap_points, self.pts_num)
|
||||
first_to_first_pose = np.eye(4)
|
||||
first_to_first_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_to_first_pose[:3,:3]))
|
||||
first_to_first_trans = first_to_first_pose[:3,3]
|
||||
first_to_first_9d = np.concatenate([first_to_first_rot_6d, first_to_first_trans], axis=0)
|
||||
if self.load_from_preprocess:
|
||||
first_downsampled_target_point_cloud = DataLoadUtil.load_from_preprocessed_pts(first_view_path)
|
||||
else:
|
||||
first_depth_L, first_depth_R = DataLoadUtil.load_depth(first_view_path, first_cam_info['near_plane'], first_cam_info['far_plane'], binocular=True)
|
||||
|
||||
first_point_cloud_L = DataLoadUtil.get_point_cloud(first_depth_L, first_cam_info['cam_intrinsic'], first_left_cam_pose)['points_world']
|
||||
first_point_cloud_R = DataLoadUtil.get_point_cloud(first_depth_R, first_cam_info['cam_intrinsic'], first_right_cam_pose)['points_world']
|
||||
|
||||
first_point_cloud_L = PtsUtil.random_downsample_point_cloud(first_point_cloud_L, 65536)
|
||||
first_point_cloud_R = PtsUtil.random_downsample_point_cloud(first_point_cloud_R, 65536)
|
||||
first_overlap_points = DataLoadUtil.get_overlapping_points(first_point_cloud_L, first_point_cloud_R)
|
||||
first_downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(first_overlap_points, self.pts_num)
|
||||
|
||||
first_to_world_rot_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(first_left_cam_pose[:3,:3]))
|
||||
first_to_world_trans = first_left_cam_pose[:3,3]
|
||||
first_to_world_9d = np.concatenate([first_to_world_rot_6d, first_to_world_trans], axis=0)
|
||||
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
||||
voxel_threshold = diag*0.02
|
||||
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
||||
@ -90,17 +112,17 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
||||
data_item = {
|
||||
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
|
||||
"first_to_first_9d": np.asarray([first_to_first_9d],dtype=np.float32),
|
||||
"first_to_world_9d": np.asarray([first_to_world_9d],dtype=np.float32),
|
||||
"scene_name": scene_name,
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
"voxel_threshold": voxel_threshold,
|
||||
"filter_degree": self.filter_degree,
|
||||
"first_frame_to_world": np.asarray(first_frame_to_world, dtype=np.float32),
|
||||
"O_to_L_pose": first_O_to_first_L_pose,
|
||||
"first_frame_coverage": first_frame_coverage,
|
||||
"scene_path": scene_path,
|
||||
"model_points_normals": model_points_normals,
|
||||
"best_seq_len": data_item_info["best_seq_len"],
|
||||
"first_frame_id": first_frame_idx,
|
||||
}
|
||||
return data_item
|
||||
|
||||
@ -111,10 +133,9 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
def collate_fn(batch):
|
||||
collate_data = {}
|
||||
collate_data["first_pts"] = [torch.tensor(item['first_pts']) for item in batch]
|
||||
collate_data["first_to_first_9d"] = [torch.tensor(item['first_to_first_9d']) for item in batch]
|
||||
collate_data["first_frame_to_world"] = torch.stack([torch.tensor(item["first_frame_to_world"]) for item in batch])
|
||||
collate_data["first_to_world_9d"] = [torch.tensor(item['first_to_world_9d']) for item in batch]
|
||||
for key in batch[0].keys():
|
||||
if key not in ["first_pts", "first_to_first_9d", "first_frame_to_world"]:
|
||||
if key not in ["first_pts", "first_to_world_9d"]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
return collate_fn
|
||||
|
@ -92,12 +92,16 @@ class Inferencer(Runner):
|
||||
model_points_normals = data["model_points_normals"][0]
|
||||
model_pts = model_points_normals[:,:3]
|
||||
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
|
||||
first_frame_to_world = data["first_frame_to_world"][0]
|
||||
first_frame_to_world_9d = data["first_to_world_9d"][0]
|
||||
first_frame_to_world = torch.eye(4, device=first_frame_to_world_9d.device)
|
||||
first_frame_to_world[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(first_frame_to_world_9d[:,:6])[0]
|
||||
first_frame_to_world[:3,3] = first_frame_to_world_9d[0,6:]
|
||||
first_frame_to_world = first_frame_to_world.to(self.device)
|
||||
|
||||
''' data for inference '''
|
||||
input_data = {}
|
||||
input_data["scanned_pts"] = [data["first_pts"][0].to(self.device)]
|
||||
input_data["scanned_n_to_world_pose_9d"] = [data["first_frame_to_world"][0].to(self.device)]
|
||||
input_data["scanned_n_to_world_pose_9d"] = [data["first_to_world_9d"][0].to(self.device)]
|
||||
input_data["mode"] = namespace.Mode.TEST
|
||||
input_pts_N = input_data["scanned_pts"][0].shape[1]
|
||||
|
||||
@ -113,20 +117,19 @@ class Inferencer(Runner):
|
||||
while len(pred_cr_seq) < max_iter and retry < max_retry:
|
||||
|
||||
output = self.pipeline(input_data)
|
||||
next_pose_9d = output["pred_pose_9d"]
|
||||
pred_pose = torch.eye(4, device=next_pose_9d.device)
|
||||
pred_pose_9d = output["pred_pose_9d"]
|
||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(next_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = next_pose_9d[0,6:]
|
||||
pred_n_to_world_pose_mat = torch.matmul(first_frame_to_world, pred_pose)
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(pred_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
|
||||
try:
|
||||
new_target_pts_world, new_pts_world = RenderUtil.render_pts(pred_n_to_world_pose_mat, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose, require_full_scene=True)
|
||||
new_target_pts_world, new_pts_world = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose, require_full_scene=True)
|
||||
except Exception as e:
|
||||
Log.warning(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
print("curr_pred_cr: ", last_pred_cr)
|
||||
retry_no_pts_pose.append(pred_n_to_world_pose_mat.cpu().numpy().tolist())
|
||||
retry_no_pts_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
@ -138,7 +141,7 @@ class Inferencer(Runner):
|
||||
break
|
||||
if pred_cr <= last_pred_cr + cr_increase_threshold:
|
||||
retry += 1
|
||||
retry_duplication_pose.append(pred_n_to_world_pose_mat.cpu().numpy().tolist())
|
||||
retry_duplication_pose.append(pred_pose.cpu().numpy().tolist())
|
||||
continue
|
||||
|
||||
retry = 0
|
||||
@ -151,7 +154,7 @@ class Inferencer(Runner):
|
||||
new_pts_tensor = torch.tensor(new_pts, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
|
||||
input_data["scanned_pts"] = [torch.cat([input_data["scanned_pts"][0] , new_pts_tensor], dim=0)]
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], next_pose_9d], dim=0)]
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
|
||||
|
@ -25,15 +25,17 @@ class StrategyGenerator(Runner):
|
||||
self.to_specified_dir = ConfigManager.get("runner", "generate", "to_specified_dir")
|
||||
self.save_best_combined_pts = ConfigManager.get("runner", "generate", "save_best_combined_points")
|
||||
self.save_mesh = ConfigManager.get("runner", "generate", "save_mesh")
|
||||
self.load_pts = ConfigManager.get("runner", "generate", "load_points")
|
||||
self.filter_degree = ConfigManager.get("runner", "generate", "filter_degree")
|
||||
self.overwrite = ConfigManager.get("runner", "generate", "overwrite")
|
||||
self.save_pts = ConfigManager.get("runner","generate","save_points")
|
||||
self.seq_num = ConfigManager.get("runner","generate","seq_num")
|
||||
|
||||
|
||||
|
||||
def run(self):
|
||||
dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list")
|
||||
voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold")
|
||||
self.save_pts = ConfigManager.get("runner","generate","save_points")
|
||||
for dataset_idx in range(len(dataset_name_list)):
|
||||
dataset_name = dataset_name_list[dataset_idx]
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
|
||||
@ -48,7 +50,7 @@ class StrategyGenerator(Runner):
|
||||
diag = DataLoadUtil.get_bbox_diag(model_dir, scene_name)
|
||||
voxel_threshold = diag*0.02
|
||||
status_manager.set_status("generate_strategy", "strategy_generator", "voxel_threshold", voxel_threshold)
|
||||
output_label_path = DataLoadUtil.get_label_path(root_dir, scene_name)
|
||||
output_label_path = DataLoadUtil.get_label_path(root_dir, scene_name,0)
|
||||
if os.path.exists(output_label_path) and not self.overwrite:
|
||||
Log.info(f"Scene <{scene_name}> Already Exists, Skip")
|
||||
cnt += 1
|
||||
@ -79,43 +81,52 @@ class StrategyGenerator(Runner):
|
||||
pts_list = []
|
||||
|
||||
for frame_idx in range(frame_num):
|
||||
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
|
||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||
#display_table = None #DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True, target_mask_label=()) #TODO
|
||||
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree)
|
||||
if self.load_pts and os.path.exists(os.path.join(root,scene_name, "pts", f"{frame_idx}.txt")):
|
||||
sampled_point_cloud = np.loadtxt(os.path.join(root,scene_name, "pts", f"{frame_idx}.txt"))
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
pts_list.append(sampled_point_cloud)
|
||||
continue
|
||||
else:
|
||||
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
|
||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree)
|
||||
|
||||
if self.save_pts:
|
||||
pts_dir = os.path.join(root,scene_name, "pts")
|
||||
if not os.path.exists(pts_dir):
|
||||
os.makedirs(pts_dir)
|
||||
np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud)
|
||||
pts_list.append(sampled_point_cloud)
|
||||
if self.save_pts:
|
||||
pts_dir = os.path.join(root,scene_name, "pts")
|
||||
if not os.path.exists(pts_dir):
|
||||
os.makedirs(pts_dir)
|
||||
np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud)
|
||||
pts_list.append(sampled_point_cloud)
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num)
|
||||
|
||||
seq_num = min(self.seq_num, len(pts_list))
|
||||
init_view_list = range(seq_num)
|
||||
|
||||
seq_idx = 0
|
||||
for init_view in init_view_list:
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "computing sequence", seq_idx, len(init_view_list))
|
||||
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list,init_view=init_view, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info)
|
||||
data_pairs = self.generate_data_pairs(limited_useful_view)
|
||||
seq_save_data = {
|
||||
"data_pairs": data_pairs,
|
||||
"best_sequence": limited_useful_view,
|
||||
"max_coverage_rate": limited_useful_view[-1][1]
|
||||
}
|
||||
|
||||
limited_useful_view, _, best_combined_pts = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info)
|
||||
data_pairs = self.generate_data_pairs(limited_useful_view)
|
||||
seq_save_data = {
|
||||
"data_pairs": data_pairs,
|
||||
"best_sequence": limited_useful_view,
|
||||
"max_coverage_rate": limited_useful_view[-1][1]
|
||||
}
|
||||
|
||||
status_manager.set_status("generate_strategy", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
|
||||
Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}")
|
||||
|
||||
output_label_path = DataLoadUtil.get_label_path(root, scene_name)
|
||||
output_best_reconstructed_pts_path = os.path.join(root,scene_name, f"best_reconstructed_pts.txt")
|
||||
|
||||
with open(output_label_path, 'w') as f:
|
||||
json.dump(seq_save_data, f)
|
||||
|
||||
if self.save_best_combined_pts:
|
||||
np.savetxt(output_best_reconstructed_pts_path, best_combined_pts)
|
||||
status_manager.set_status("generate_strategy", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
|
||||
Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}")
|
||||
|
||||
output_label_path = DataLoadUtil.get_label_path(root, scene_name, seq_idx)
|
||||
|
||||
|
||||
with open(output_label_path, 'w') as f:
|
||||
json.dump(seq_save_data, f)
|
||||
seq_idx += 1
|
||||
if self.save_mesh:
|
||||
DataLoadUtil.save_target_mesh_at_world_space(root, model_dir, scene_name)
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "computing sequence", len(init_view_list), len(init_view_list))
|
||||
|
||||
|
||||
def generate_data_pairs(self, useful_view):
|
||||
|
@ -3,6 +3,7 @@ import numpy as np
|
||||
import json
|
||||
import cv2
|
||||
import trimesh
|
||||
import torch
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
class DataLoadUtil:
|
||||
@ -13,8 +14,21 @@ class DataLoadUtil:
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_label_path(root, scene_name):
|
||||
path = os.path.join(root,scene_name, f"label.json")
|
||||
def get_label_num(root, scene_name):
|
||||
label_dir = os.path.join(root,scene_name,"label")
|
||||
return len(os.listdir(label_dir))
|
||||
|
||||
@staticmethod
|
||||
def get_label_path(root, scene_name, seq_idx):
|
||||
label_dir = os.path.join(root,scene_name,"label")
|
||||
if not os.path.exists(label_dir):
|
||||
os.makedirs(label_dir)
|
||||
path = os.path.join(label_dir,f"{seq_idx}.json")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
def get_label_path_old(root, scene_name):
|
||||
path = os.path.join(root,scene_name,"label.json")
|
||||
return path
|
||||
|
||||
@staticmethod
|
||||
@ -45,11 +59,14 @@ class DataLoadUtil:
|
||||
mesh.export(model_path)
|
||||
|
||||
@staticmethod
|
||||
def save_target_mesh_at_world_space(root, model_dir, scene_name):
|
||||
def save_target_mesh_at_world_space(root, model_dir, scene_name, display_table_as_world_space_origin=True):
|
||||
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
|
||||
target_name = scene_info["target_name"]
|
||||
transformation = scene_info[target_name]
|
||||
location = transformation["location"]
|
||||
if display_table_as_world_space_origin:
|
||||
location = transformation["location"] - DataLoadUtil.DISPLAY_TABLE_POSITION
|
||||
else:
|
||||
location = transformation["location"]
|
||||
rotation_euler = transformation["rotation_euler"]
|
||||
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
|
||||
pose_mat[:3, 3] = location
|
||||
@ -181,7 +198,9 @@ class DataLoadUtil:
|
||||
|
||||
@staticmethod
|
||||
def get_real_cam_O_from_cam_L(cam_L, cam_O_to_cam_L, display_table_as_world_space_origin=True):
|
||||
nO_to_display_table_pose = cam_L.cpu().numpy() @ cam_O_to_cam_L
|
||||
if isinstance(cam_L, torch.Tensor):
|
||||
cam_L = cam_L.cpu().numpy()
|
||||
nO_to_display_table_pose = cam_L @ cam_O_to_cam_L
|
||||
if display_table_as_world_space_origin:
|
||||
display_table_to_world = np.eye(4)
|
||||
display_table_to_world[:3, 3] = DataLoadUtil.DISPLAY_TABLE_POSITION
|
||||
|
@ -45,12 +45,17 @@ class ReconstructionUtil:
|
||||
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, display_table_point_cloud_list = None,threshold=0.01, overlap_threshold=0.3, status_info=None):
|
||||
selected_views = []
|
||||
current_coverage = 0.0
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list,threshold=0.01, overlap_threshold=0.3, init_view = 0, status_info=None):
|
||||
selected_views = [point_cloud_list[init_view]]
|
||||
combined_point_cloud = np.vstack(selected_views)
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
current_coverage = new_coverage
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = []
|
||||
view_sequence = [(init_view, current_coverage)]
|
||||
cnt_processed_view = 0
|
||||
remaining_views.remove(init_view)
|
||||
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
@ -70,14 +75,13 @@ class ReconstructionUtil:
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
#print(f"view_index: {view_index}, coverage_increase: {coverage_increase}")
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=1e-3:
|
||||
if best_coverage_increase <=3e-3:
|
||||
break
|
||||
selected_views.append(point_cloud_list[best_view])
|
||||
remaining_views.remove(best_view)
|
||||
|
@ -12,8 +12,8 @@ class RenderUtil:
|
||||
def render_pts(cam_pose, scene_path,script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
||||
|
||||
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose)
|
||||
|
||||
|
||||
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
params = {
|
||||
"cam_pose": nO_to_world_pose.tolist(),
|
||||
@ -30,7 +30,6 @@ class RenderUtil:
|
||||
print(result.stderr)
|
||||
return None
|
||||
path = os.path.join(temp_dir, "tmp")
|
||||
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
filtered_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
|
||||
@ -44,4 +43,5 @@ class RenderUtil:
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
|
||||
full_scene_point_cloud = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
|
||||
|
||||
|
||||
return filtered_point_cloud, full_scene_point_cloud
|
Loading…
x
Reference in New Issue
Block a user