compute, load, and save covered_scan_pts

This commit is contained in:
hofee 2024-09-30 01:24:48 +08:00
parent cef7ab4429
commit 2633a48b4e
2 changed files with 211 additions and 104 deletions

View File

@ -77,28 +77,40 @@ class StrategyGenerator(Runner):
model_points_normals = DataLoadUtil.load_points_normals(root, scene_name)
model_pts = model_points_normals[:,:3]
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
display_table_info = DataLoadUtil.get_display_table_info(root, scene_name)
radius = display_table_info["radius"]
top = DataLoadUtil.get_display_table_top(root, scene_name)
scan_points = ReconstructionUtil.generate_scan_points(display_table_top=top,display_table_radius=radius)
pts_list = []
scan_points_indices_list = []
for frame_idx in range(frame_num):
if self.load_pts and os.path.exists(os.path.join(root,scene_name, "pts", f"{frame_idx}.txt")):
sampled_point_cloud = np.loadtxt(os.path.join(root,scene_name, "pts", f"{frame_idx}.txt"))
indices = np.loadtxt(os.path.join(root,scene_name, "pts", f"{frame_idx}_indices.txt")).astype(np.int32).tolist()
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
pts_list.append(sampled_point_cloud)
continue
scan_points_indices_list.append(indices)
else:
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
point_cloud, display_table_pts = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True, get_display_table_pts=True)
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree)
covered_pts, indices = ReconstructionUtil.compute_covered_scan_points(scan_points, display_table_pts)
if self.save_pts:
pts_dir = os.path.join(root,scene_name, "pts")
covered_pts_dir = os.path.join(pts_dir, "covered_scan_pts")
if not os.path.exists(pts_dir):
os.makedirs(pts_dir)
if not os.path.exists(covered_pts_dir):
os.makedirs(covered_pts_dir)
np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud)
np.savetxt(os.path.join(covered_pts_dir, f"{frame_idx}.txt"), covered_pts)
np.savetxt(os.path.join(pts_dir, f"{frame_idx}_indices.txt"), indices)
pts_list.append(sampled_point_cloud)
scan_points_indices_list.append(indices)
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num)
seq_num = min(self.seq_num, len(pts_list))

View File

@ -6,56 +6,61 @@ import trimesh
import torch
from utils.pts import PtsUtil
class DataLoadUtil:
TABLE_POSITION = np.asarray([0,0,0.8215])
TABLE_POSITION = np.asarray([0, 0, 0.8215])
@staticmethod
def get_display_table_info(root, scene_name):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
display_table_info = scene_info["display_table"]
return display_table_info
@staticmethod
def get_display_table_top(root, scene_name):
display_table_height = DataLoadUtil.get_display_table_info(root, scene_name)["height"]
display_table_top = DataLoadUtil.TABLE_POSITION + np.asarray([0,0,display_table_height])
display_table_height = DataLoadUtil.get_display_table_info(root, scene_name)[
"height"
]
display_table_top = DataLoadUtil.TABLE_POSITION + np.asarray(
[0, 0, display_table_height]
)
return display_table_top
@staticmethod
def get_path(root, scene_name, frame_idx):
path = os.path.join(root, scene_name, f"{frame_idx}")
return path
@staticmethod
def get_label_num(root, scene_name):
label_dir = os.path.join(root,scene_name,"label")
label_dir = os.path.join(root, scene_name, "label")
return len(os.listdir(label_dir))
@staticmethod
def get_label_path(root, scene_name, seq_idx):
label_dir = os.path.join(root,scene_name,"label")
label_dir = os.path.join(root, scene_name, "label")
if not os.path.exists(label_dir):
os.makedirs(label_dir)
path = os.path.join(label_dir,f"{seq_idx}.json")
path = os.path.join(label_dir, f"{seq_idx}.json")
return path
@staticmethod
def get_label_path_old(root, scene_name):
path = os.path.join(root,scene_name,"label.json")
path = os.path.join(root, scene_name, "label.json")
return path
@staticmethod
def get_scene_seq_length(root, scene_name):
camera_params_path = os.path.join(root, scene_name, "camera_params")
return len(os.listdir(camera_params_path))
@staticmethod
def load_mesh_at(model_dir, object_name, world_object_pose):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
mesh = trimesh.load(model_path)
mesh.apply_transform(world_object_pose)
return mesh
@staticmethod
def get_bbox_diag(model_dir, object_name):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
@ -63,8 +68,7 @@ class DataLoadUtil:
bbox = mesh.bounding_box.extents
diagonal_length = np.linalg.norm(bbox)
return diagonal_length
@staticmethod
def save_mesh_at(model_dir, output_dir, object_name, scene_name, world_object_pose):
mesh = DataLoadUtil.load_mesh_at(model_dir, object_name, world_object_pose)
@ -72,12 +76,16 @@ class DataLoadUtil:
mesh.export(model_path)
@staticmethod
def save_target_mesh_at_world_space(root, model_dir, scene_name, display_table_as_world_space_origin=True):
def save_target_mesh_at_world_space(
root, model_dir, scene_name, display_table_as_world_space_origin=True
):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
target_name = scene_info["target_name"]
transformation = scene_info[target_name]
if display_table_as_world_space_origin:
location = transformation["location"] - DataLoadUtil.get_display_table_top(root, scene_name)
location = transformation["location"] - DataLoadUtil.get_display_table_top(
root, scene_name
)
else:
location = transformation["location"]
rotation_euler = transformation["rotation_euler"]
@ -90,21 +98,21 @@ class DataLoadUtil:
os.makedirs(mesh_dir)
model_path = os.path.join(mesh_dir, "world_target_mesh.obj")
mesh.export(model_path)
@staticmethod
def load_scene_info(root, scene_name):
scene_info_path = os.path.join(root, scene_name, "scene_info.json")
with open(scene_info_path, "r") as f:
scene_info = json.load(f)
return scene_info
@staticmethod
def load_target_pts_num_dict(root, scene_name):
target_pts_num_path = os.path.join(root, scene_name, "target_pts_num.json")
with open(target_pts_num_path, "r") as f:
target_pts_num_dict = json.load(f)
return target_pts_num_dict
@staticmethod
def load_target_object_pose(root, scene_name):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
@ -115,10 +123,10 @@ class DataLoadUtil:
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
pose_mat[:3, 3] = location
return pose_mat
@staticmethod
def load_depth(path, min_depth=0.01,max_depth=5.0,binocular=False):
def load_depth(path, min_depth=0.01, max_depth=5.0, binocular=False):
def load_depth_from_real_path(real_path, min_depth, max_depth):
depth = cv2.imread(real_path, cv2.IMREAD_UNCHANGED)
depth = depth.astype(np.float32) / 65535.0
@ -126,78 +134,104 @@ class DataLoadUtil:
max_depth = max_depth
depth_meters = min_depth + (max_depth - min_depth) * depth
return depth_meters
if binocular:
depth_path_L = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + "_L.png")
depth_path_R = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + "_R.png")
depth_meters_L = load_depth_from_real_path(depth_path_L, min_depth, max_depth)
depth_meters_R = load_depth_from_real_path(depth_path_R, min_depth, max_depth)
depth_path_L = os.path.join(
os.path.dirname(path), "depth", os.path.basename(path) + "_L.png"
)
depth_path_R = os.path.join(
os.path.dirname(path), "depth", os.path.basename(path) + "_R.png"
)
depth_meters_L = load_depth_from_real_path(
depth_path_L, min_depth, max_depth
)
depth_meters_R = load_depth_from_real_path(
depth_path_R, min_depth, max_depth
)
return depth_meters_L, depth_meters_R
else:
depth_path = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + ".png")
depth_path = os.path.join(
os.path.dirname(path), "depth", os.path.basename(path) + ".png"
)
depth_meters = load_depth_from_real_path(depth_path, min_depth, max_depth)
return depth_meters
@staticmethod
def load_seg(path, binocular=False):
if binocular:
def clean_mask(mask_image):
green = [0, 255, 0, 255]
red = [255, 0, 0, 255]
threshold = 2
mask_image = np.where(np.abs(mask_image - green) <= threshold, green, mask_image)
mask_image = np.where(np.abs(mask_image - red) <= threshold, red, mask_image)
mask_image = np.where(
np.abs(mask_image - green) <= threshold, green, mask_image
)
mask_image = np.where(
np.abs(mask_image - red) <= threshold, red, mask_image
)
return mask_image
mask_path_L = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_L.png")
mask_path_L = os.path.join(
os.path.dirname(path), "mask", os.path.basename(path) + "_L.png"
)
mask_image_L = clean_mask(cv2.imread(mask_path_L, cv2.IMREAD_UNCHANGED))
mask_path_R = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_R.png")
mask_path_R = os.path.join(
os.path.dirname(path), "mask", os.path.basename(path) + "_R.png"
)
mask_image_R = clean_mask(cv2.imread(mask_path_R, cv2.IMREAD_UNCHANGED))
return mask_image_L, mask_image_R
else:
mask_path = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + ".png")
mask_path = os.path.join(
os.path.dirname(path), "mask", os.path.basename(path) + ".png"
)
mask_image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
return mask_image
@staticmethod
def load_label(path):
with open(path, 'r') as f:
with open(path, "r") as f:
label_data = json.load(f)
return label_data
@staticmethod
def load_rgb(path):
rgb_path = os.path.join(os.path.dirname(path), "rgb", os.path.basename(path) + ".png")
rgb_path = os.path.join(
os.path.dirname(path), "rgb", os.path.basename(path) + ".png"
)
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
return rgb_image
@staticmethod
def load_from_preprocessed_pts(path):
npy_path = os.path.join(os.path.dirname(path), "points", os.path.basename(path) + ".npy")
npy_path = os.path.join(
os.path.dirname(path), "points", os.path.basename(path) + ".npy"
)
pts = np.load(npy_path)
return pts
@staticmethod
def cam_pose_transformation(cam_pose_before):
offset = np.asarray([
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
cam_pose_after = cam_pose_before @ offset
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
cam_pose_after = cam_pose_before @ offset
return cam_pose_after
@staticmethod
def load_cam_info(path, binocular=False, display_table_as_world_space_origin=True):
scene_dir = os.path.dirname(path)
root_dir = os.path.dirname(scene_dir)
scene_name = os.path.basename(scene_dir)
camera_params_path = os.path.join(os.path.dirname(path), "camera_params", os.path.basename(path) + ".json")
with open(camera_params_path, 'r') as f:
camera_params_path = os.path.join(
os.path.dirname(path), "camera_params", os.path.basename(path) + ".json"
)
with open(camera_params_path, "r") as f:
label_data = json.load(f)
cam_to_world = np.asarray(label_data["extrinsic"])
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
world_to_display_table = np.eye(4)
world_to_display_table[:3, 3] = - DataLoadUtil.get_display_table_top(root_dir, scene_name)
world_to_display_table[:3, 3] = -DataLoadUtil.get_display_table_top(
root_dir, scene_name
)
if display_table_as_world_space_origin:
cam_to_world = np.dot(world_to_display_table, cam_to_world)
cam_intrinsic = np.asarray(label_data["intrinsic"])
@ -205,7 +239,7 @@ class DataLoadUtil:
"cam_to_world": cam_to_world,
"cam_intrinsic": cam_intrinsic,
"far_plane": label_data["far_plane"],
"near_plane": label_data["near_plane"]
"near_plane": label_data["near_plane"],
}
if binocular:
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
@ -218,104 +252,165 @@ class DataLoadUtil:
cam_info["cam_to_world_O"] = cam_to_world_O
cam_info["cam_to_world_R"] = cam_to_world_R
return cam_info
@staticmethod
def get_real_cam_O_from_cam_L(cam_L, cam_O_to_cam_L, scene_path, display_table_as_world_space_origin=True):
def get_real_cam_O_from_cam_L(
cam_L, cam_O_to_cam_L, scene_path, display_table_as_world_space_origin=True
):
root_dir = os.path.dirname(scene_path)
scene_name = os.path.basename(scene_path)
if isinstance(cam_L, torch.Tensor):
cam_L = cam_L.cpu().numpy()
nO_to_display_table_pose = cam_L @ cam_O_to_cam_L
nO_to_display_table_pose = cam_L @ cam_O_to_cam_L
if display_table_as_world_space_origin:
display_table_to_world = np.eye(4)
display_table_to_world[:3, 3] = DataLoadUtil.get_display_table_top(root_dir, scene_name)
display_table_to_world[:3, 3] = DataLoadUtil.get_display_table_top(
root_dir, scene_name
)
nO_to_world_pose = np.dot(display_table_to_world, nO_to_display_table_pose)
nO_to_world_pose = DataLoadUtil.cam_pose_transformation(nO_to_world_pose)
return nO_to_world_pose
@staticmethod
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0,255,0,255)):
def get_target_point_cloud(
depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0, 255, 0, 255)
):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
mask = mask.reshape(-1,4)
target_mask = (mask == target_mask_label).all(axis=-1)
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
mask = mask.reshape(-1, 4)
target_mask = (mask == target_mask_label).all(axis=-1)
target_points_camera = points_camera[target_mask]
target_points_camera_aug = np.concatenate([target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1)
target_points_camera_aug = np.concatenate(
[target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1
)
target_points_world = np.dot(cam_extrinsic, target_points_camera_aug.T).T[:, :3]
return {
"points_world": target_points_world,
"points_camera": target_points_camera
"points_camera": target_points_camera,
}
@staticmethod
def get_point_cloud(depth, cam_intrinsic, cam_extrinsic):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
points_camera_aug = np.concatenate(
[points_camera, np.ones((points_camera.shape[0], 1))], axis=-1
)
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
return {
"points_world": points_world,
"points_camera": points_camera
}
return {"points_world": points_world, "points_camera": points_camera}
@staticmethod
def get_target_point_cloud_world_from_path(path, binocular=False, random_downsample_N=65536, voxel_size = 0.005, target_mask_label=(0,255,0,255)):
def get_target_point_cloud_world_from_path(
path,
binocular=False,
random_downsample_N=65536,
voxel_size=0.005,
target_mask_label=(0, 255, 0, 255),
display_table_mask_label=(255, 0, 0, 255),
get_display_table_pts=False
):
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
if binocular:
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
depth_L, depth_R = DataLoadUtil.load_depth(
path, cam_info["near_plane"], cam_info["far_plane"], binocular=True
)
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
point_cloud_L = DataLoadUtil.get_target_point_cloud(depth_L, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask_L, target_mask_label)['points_world']
point_cloud_R = DataLoadUtil.get_target_point_cloud(depth_R, cam_info['cam_intrinsic'], cam_info['cam_to_world_R'], mask_R, target_mask_label)['points_world']
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, random_downsample_N)
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, random_downsample_N)
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size)
point_cloud_L = DataLoadUtil.get_target_point_cloud(
depth_L,
cam_info["cam_intrinsic"],
cam_info["cam_to_world"],
mask_L,
target_mask_label,
)["points_world"]
point_cloud_R = DataLoadUtil.get_target_point_cloud(
depth_R,
cam_info["cam_intrinsic"],
cam_info["cam_to_world_R"],
mask_R,
target_mask_label,
)["points_world"]
point_cloud_L = PtsUtil.random_downsample_point_cloud(
point_cloud_L, random_downsample_N
)
point_cloud_R = PtsUtil.random_downsample_point_cloud(
point_cloud_R, random_downsample_N
)
overlap_points = DataLoadUtil.get_overlapping_points(
point_cloud_L, point_cloud_R, voxel_size
)
if get_display_table_pts:
display_pts_L = DataLoadUtil.get_target_point_cloud(
depth_L,
cam_info["cam_intrinsic"],
cam_info["cam_to_world"],
mask_L,
display_table_mask_label,
)["points_world"]
display_pts_R = DataLoadUtil.get_target_point_cloud(
depth_R,
cam_info["cam_intrinsic"],
cam_info["cam_to_world_R"],
mask_R,
display_table_mask_label,
)["points_world"]
display_pts_overlap = DataLoadUtil.get_overlapping_points(
display_pts_L, display_pts_R, voxel_size
)
return overlap_points, display_pts_overlap
return overlap_points
else:
depth = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'])
depth = DataLoadUtil.load_depth(
path, cam_info["near_plane"], cam_info["far_plane"]
)
mask = DataLoadUtil.load_seg(path)
point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask)['points_world']
point_cloud = DataLoadUtil.get_target_point_cloud(
depth, cam_info["cam_intrinsic"], cam_info["cam_to_world"], mask
)["points_world"]
return point_cloud
@staticmethod
def voxelize_points(points, voxel_size):
voxel_indices = np.floor(points / voxel_size).astype(np.int32)
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
return unique_voxels
@staticmethod
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005):
voxels_L, indices_L = DataLoadUtil.voxelize_points(point_cloud_L, voxel_size)
voxels_R, _ = DataLoadUtil.voxelize_points(point_cloud_R, voxel_size)
voxel_indices_L = voxels_L.view([('', voxels_L.dtype)]*3)
voxel_indices_R = voxels_R.view([('', voxels_R.dtype)]*3)
voxel_indices_L = voxels_L.view([("", voxels_L.dtype)] * 3)
voxel_indices_R = voxels_R.view([("", voxels_R.dtype)] * 3)
overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R)
mask_L = np.isin(indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0])
mask_L = np.isin(
indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0]
)
overlapping_points = point_cloud_L[mask_L]
return overlapping_points
@staticmethod
def load_points_normals(root, scene_name, display_table_as_world_space_origin=True):
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
points_normals = np.loadtxt(points_path)
if display_table_as_world_space_origin:
points_normals[:,:3] = points_normals[:,:3] - DataLoadUtil.get_display_table_top(root, scene_name)
return points_normals
points_normals[:, :3] = points_normals[
:, :3
] - DataLoadUtil.get_display_table_top(root, scene_name)
return points_normals