upd
This commit is contained in:
parent
287983277a
commit
04d3a359e1
@ -1,5 +1,6 @@
|
||||
from PytorchBoot.application import PytorchBootApplication
|
||||
from runners.inferencer import Inferencer
|
||||
from runners.inference_server import InferencerServer
|
||||
|
||||
@PytorchBootApplication("inference")
|
||||
class InferenceApp:
|
||||
@ -14,3 +15,17 @@ class InferenceApp:
|
||||
Evaluator("path_to_your_eval_config").run()
|
||||
'''
|
||||
Inferencer("./configs/local/inference_config.yaml").run()
|
||||
|
||||
@PytorchBootApplication("server")
|
||||
class InferenceServerApp:
|
||||
@staticmethod
|
||||
def start():
|
||||
'''
|
||||
call default or your custom runners here, code will be executed
|
||||
automatically when type "pytorch-boot run" or "ptb run" in terminal
|
||||
|
||||
example:
|
||||
Trainer("path_to_your_train_config").run()
|
||||
Evaluator("path_to_your_eval_config").run()
|
||||
'''
|
||||
InferencerServer("./configs/server/server_inference_server_config.yaml").run()
|
53
configs/server/server_inference_server_config.yaml
Normal file
53
configs/server/server_inference_server_config.yaml
Normal file
@ -0,0 +1,53 @@
|
||||
|
||||
runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cuda
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
|
||||
experiment:
|
||||
name: train_ab_global_only
|
||||
root_dir: "experiments"
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
voxel_size: 0.003
|
||||
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
module:
|
||||
pointnet_encoder:
|
||||
in_dim: 3
|
||||
out_dim: 1024
|
||||
global_feat: True
|
||||
feature_transform: False
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 256
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
output_dim: 1024
|
||||
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 2048
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
sample_mode: ode
|
||||
sampling_steps: 500
|
||||
sde_mode: ve
|
||||
pose_encoder:
|
||||
pose_dim: 9
|
||||
out_dim: 256
|
||||
pts_num_encoder:
|
||||
out_dim: 64
|
@ -13,7 +13,7 @@ from PytorchBoot.utils import Log
|
||||
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
@stereotype.runner("inferencer")
|
||||
@stereotype.runner("inferencer_server")
|
||||
class InferencerServer(Runner):
|
||||
def __init__(self, config_path):
|
||||
super().__init__(config_path)
|
||||
@ -24,9 +24,10 @@ class InferencerServer(Runner):
|
||||
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
||||
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
||||
self.pipeline = self.pipeline.to(self.device)
|
||||
self.pts_num = 8192
|
||||
|
||||
''' Experiment '''
|
||||
self.load_experiment("nbv_evaluator")
|
||||
self.load_experiment("inferencer_server")
|
||||
|
||||
def get_input_data(self, data):
|
||||
input_data = {}
|
||||
@ -36,28 +37,36 @@ class InferencerServer(Runner):
|
||||
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
||||
combined_scanned_views_pts, self.pts_num, require_idx=True
|
||||
)
|
||||
combined_scanned_views_pts_mask = np.zeros(len(scanned_pts), dtype=np.uint8)
|
||||
start_idx = 0
|
||||
for i in range(len(scanned_pts)):
|
||||
end_idx = start_idx + len(scanned_pts[i])
|
||||
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
||||
start_idx = end_idx
|
||||
# combined_scanned_views_pts_mask = np.zeros(len(scanned_pts), dtype=np.uint8)
|
||||
# start_idx = 0
|
||||
# for i in range(len(scanned_pts)):
|
||||
# end_idx = start_idx + len(scanned_pts[i])
|
||||
# combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
||||
# start_idx = end_idx
|
||||
|
||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||
# fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||
|
||||
input_data["scanned_pts_mask"] = np.asarray(fps_downsampled_combined_scanned_pts_mask, dtype=np.uint8)
|
||||
input_data["scanned_pts"] = scanned_pts
|
||||
# input_data["scanned_pts_mask"] = np.asarray(fps_downsampled_combined_scanned_pts_mask, dtype=np.uint8)
|
||||
input_data["scanned_n_to_world_pose_9d"] = np.asarray(scanned_n_to_world_pose_9d, dtype=np.float32)
|
||||
input_data["combined_scanned_pts"] = np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32)
|
||||
return input_data
|
||||
|
||||
def get_result(self, output_data):
|
||||
|
||||
estimated_delta_rot_9d = output_data["pred_pose_9d"]
|
||||
pred_pose_9d = output_data["pred_pose_9d"]
|
||||
result = {
|
||||
"estimated_delta_rot_9d": estimated_delta_rot_9d.tolist()
|
||||
"pred_pose_9d": pred_pose_9d.tolist()
|
||||
}
|
||||
return result
|
||||
|
||||
def collate_input(self, input_data):
|
||||
collated_input_data = {}
|
||||
collated_input_data["scanned_pts"] = [torch.tensor(input_data["scanned_pts"], dtype=torch.float32, device=self.device)]
|
||||
collated_input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(input_data["scanned_n_to_world_pose_9d"], dtype=torch.float32, device=self.device)]
|
||||
collated_input_data["combined_scanned_pts"] = torch.tensor(input_data["combined_scanned_pts"], dtype=torch.float32, device=self.device).unsqueeze(0)
|
||||
return collated_input_data
|
||||
|
||||
def run(self):
|
||||
Log.info("Loading from epoch {}.".format(self.current_epoch))
|
||||
|
||||
@ -65,7 +74,8 @@ class InferencerServer(Runner):
|
||||
def inference():
|
||||
data = request.json
|
||||
input_data = self.get_input_data(data)
|
||||
output_data = self.pipeline.forward_test(input_data)
|
||||
collated_input_data = self.collate_input(input_data)
|
||||
output_data = self.pipeline.forward_test(collated_input_data)
|
||||
result = self.get_result(output_data)
|
||||
return jsonify(result)
|
||||
|
@ -115,9 +115,12 @@ class Inferencer(Runner):
|
||||
retry = 0
|
||||
pred_cr_seq = [last_pred_cr]
|
||||
success = 0
|
||||
import time
|
||||
while len(pred_cr_seq) < max_iter and retry < max_retry:
|
||||
|
||||
start_time = time.time()
|
||||
output = self.pipeline(input_data)
|
||||
end_time = time.time()
|
||||
print(f"Time taken for inference: {end_time - start_time} seconds")
|
||||
pred_pose_9d = output["pred_pose_9d"]
|
||||
pred_pose = torch.eye(4, device=pred_pose_9d.device)
|
||||
|
||||
@ -125,7 +128,10 @@ class Inferencer(Runner):
|
||||
pred_pose[:3,3] = pred_pose_9d[0,6:]
|
||||
|
||||
try:
|
||||
start_time = time.time()
|
||||
new_target_pts, new_target_normals = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
end_time = time.time()
|
||||
print(f"Time taken for rendering: {end_time - start_time} seconds")
|
||||
except Exception as e:
|
||||
Log.warning(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
@ -140,8 +146,10 @@ class Inferencer(Runner):
|
||||
retry += 1
|
||||
continue
|
||||
|
||||
|
||||
start_time = time.time()
|
||||
pred_cr, new_added_pts_num = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
end_time = time.time()
|
||||
print(f"Time taken for coverage rate computation: {end_time - start_time} seconds")
|
||||
print(pred_cr, last_pred_cr, " max: ", data["seq_max_coverage_rate"])
|
||||
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
|
||||
print("max coverage rate reached!: ", pred_cr)
|
||||
|
11
utils/pts.py
11
utils/pts.py
@ -16,6 +16,17 @@ class PtsUtil:
|
||||
else:
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels[0]*voxel_size
|
||||
|
||||
@staticmethod
|
||||
def voxel_downsample_point_cloud_random(point_cloud, voxel_size=0.005, require_idx=False):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
if require_idx:
|
||||
return downsampled_points, inverse
|
||||
return downsampled_points
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
|
@ -1,6 +1,7 @@
|
||||
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import subprocess
|
||||
import tempfile
|
||||
import shutil
|
||||
@ -68,9 +69,13 @@ class RenderUtil:
|
||||
params_data_path = os.path.join(temp_dir, "params.json")
|
||||
with open(params_data_path, 'w') as f:
|
||||
json.dump(params, f)
|
||||
start_time = time.time()
|
||||
result = subprocess.run([
|
||||
'blender', '-b', '-P', script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
end_time = time.time()
|
||||
print(result)
|
||||
print(f"-- Time taken for blender: {end_time - start_time} seconds")
|
||||
if result.returncode != 0:
|
||||
print("Blender script failed:")
|
||||
print(result.stderr)
|
||||
@ -82,6 +87,7 @@ class RenderUtil:
|
||||
cam_info["far_plane"],
|
||||
binocular=True
|
||||
)
|
||||
start_time = time.time()
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
|
||||
''' target points '''
|
||||
@ -114,6 +120,7 @@ class RenderUtil:
|
||||
if not has_points:
|
||||
target_points = np.zeros((0, 3))
|
||||
target_normals = np.zeros((0, 3))
|
||||
|
||||
end_time = time.time()
|
||||
print(f"-- Time taken for processing: {end_time - start_time} seconds")
|
||||
#import ipdb; ipdb.set_trace()
|
||||
return target_points, target_normals
|
Loading…
x
Reference in New Issue
Block a user