This commit is contained in:
hofee 2024-11-02 21:54:46 +00:00
parent 287983277a
commit 04d3a359e1
6 changed files with 120 additions and 16 deletions

View File

@ -1,5 +1,6 @@
from PytorchBoot.application import PytorchBootApplication
from runners.inferencer import Inferencer
from runners.inference_server import InferencerServer
@PytorchBootApplication("inference")
class InferenceApp:
@ -14,3 +15,17 @@ class InferenceApp:
Evaluator("path_to_your_eval_config").run()
'''
Inferencer("./configs/local/inference_config.yaml").run()
@PytorchBootApplication("server")
class InferenceServerApp:
@staticmethod
def start():
'''
call default or your custom runners here, code will be executed
automatically when type "pytorch-boot run" or "ptb run" in terminal
example:
Trainer("path_to_your_train_config").run()
Evaluator("path_to_your_eval_config").run()
'''
InferencerServer("./configs/server/server_inference_server_config.yaml").run()

View File

@ -0,0 +1,53 @@
runner:
general:
seed: 0
device: cuda
cuda_visible_devices: "0,1,2,3,4,5,6,7"
experiment:
name: train_ab_global_only
root_dir: "experiments"
epoch: -1 # -1 stands for last epoch
pipeline: nbv_reconstruction_pipeline
voxel_size: 0.003
pipeline:
nbv_reconstruction_pipeline:
modules:
pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
eps: 1e-5
global_scanned_feat: True
module:
pointnet_encoder:
in_dim: 3
out_dim: 1024
global_feat: True
feature_transform: False
transformer_seq_encoder:
embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 1024
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 2048
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False
sample_mode: ode
sampling_steps: 500
sde_mode: ve
pose_encoder:
pose_dim: 9
out_dim: 256
pts_num_encoder:
out_dim: 64

View File

@ -13,7 +13,7 @@ from PytorchBoot.utils import Log
from utils.pts import PtsUtil
@stereotype.runner("inferencer")
@stereotype.runner("inferencer_server")
class InferencerServer(Runner):
def __init__(self, config_path):
super().__init__(config_path)
@ -24,9 +24,10 @@ class InferencerServer(Runner):
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
self.pipeline = self.pipeline.to(self.device)
self.pts_num = 8192
''' Experiment '''
self.load_experiment("nbv_evaluator")
self.load_experiment("inferencer_server")
def get_input_data(self, data):
input_data = {}
@ -36,28 +37,36 @@ class InferencerServer(Runner):
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
combined_scanned_views_pts, self.pts_num, require_idx=True
)
combined_scanned_views_pts_mask = np.zeros(len(scanned_pts), dtype=np.uint8)
start_idx = 0
for i in range(len(scanned_pts)):
end_idx = start_idx + len(scanned_pts[i])
combined_scanned_views_pts_mask[start_idx:end_idx] = i
start_idx = end_idx
# combined_scanned_views_pts_mask = np.zeros(len(scanned_pts), dtype=np.uint8)
# start_idx = 0
# for i in range(len(scanned_pts)):
# end_idx = start_idx + len(scanned_pts[i])
# combined_scanned_views_pts_mask[start_idx:end_idx] = i
# start_idx = end_idx
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
# fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
input_data["scanned_pts_mask"] = np.asarray(fps_downsampled_combined_scanned_pts_mask, dtype=np.uint8)
input_data["scanned_pts"] = scanned_pts
# input_data["scanned_pts_mask"] = np.asarray(fps_downsampled_combined_scanned_pts_mask, dtype=np.uint8)
input_data["scanned_n_to_world_pose_9d"] = np.asarray(scanned_n_to_world_pose_9d, dtype=np.float32)
input_data["combined_scanned_pts"] = np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32)
return input_data
def get_result(self, output_data):
estimated_delta_rot_9d = output_data["pred_pose_9d"]
pred_pose_9d = output_data["pred_pose_9d"]
result = {
"estimated_delta_rot_9d": estimated_delta_rot_9d.tolist()
"pred_pose_9d": pred_pose_9d.tolist()
}
return result
def collate_input(self, input_data):
collated_input_data = {}
collated_input_data["scanned_pts"] = [torch.tensor(input_data["scanned_pts"], dtype=torch.float32, device=self.device)]
collated_input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(input_data["scanned_n_to_world_pose_9d"], dtype=torch.float32, device=self.device)]
collated_input_data["combined_scanned_pts"] = torch.tensor(input_data["combined_scanned_pts"], dtype=torch.float32, device=self.device).unsqueeze(0)
return collated_input_data
def run(self):
Log.info("Loading from epoch {}.".format(self.current_epoch))
@ -65,7 +74,8 @@ class InferencerServer(Runner):
def inference():
data = request.json
input_data = self.get_input_data(data)
output_data = self.pipeline.forward_test(input_data)
collated_input_data = self.collate_input(input_data)
output_data = self.pipeline.forward_test(collated_input_data)
result = self.get_result(output_data)
return jsonify(result)

View File

@ -115,9 +115,12 @@ class Inferencer(Runner):
retry = 0
pred_cr_seq = [last_pred_cr]
success = 0
import time
while len(pred_cr_seq) < max_iter and retry < max_retry:
start_time = time.time()
output = self.pipeline(input_data)
end_time = time.time()
print(f"Time taken for inference: {end_time - start_time} seconds")
pred_pose_9d = output["pred_pose_9d"]
pred_pose = torch.eye(4, device=pred_pose_9d.device)
@ -125,7 +128,10 @@ class Inferencer(Runner):
pred_pose[:3,3] = pred_pose_9d[0,6:]
try:
start_time = time.time()
new_target_pts, new_target_normals = RenderUtil.render_pts(pred_pose, scene_path, self.script_path, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
end_time = time.time()
print(f"Time taken for rendering: {end_time - start_time} seconds")
except Exception as e:
Log.warning(f"Error in scene {scene_path}, {e}")
print("current pose: ", pred_pose)
@ -140,8 +146,10 @@ class Inferencer(Runner):
retry += 1
continue
start_time = time.time()
pred_cr, new_added_pts_num = self.compute_coverage_rate(scanned_view_pts, new_target_pts, down_sampled_model_pts, threshold=voxel_threshold)
end_time = time.time()
print(f"Time taken for coverage rate computation: {end_time - start_time} seconds")
print(pred_cr, last_pred_cr, " max: ", data["seq_max_coverage_rate"])
if pred_cr >= data["seq_max_coverage_rate"] - 1e-3:
print("max coverage rate reached!: ", pred_cr)

View File

@ -16,6 +16,17 @@ class PtsUtil:
else:
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
return unique_voxels[0]*voxel_size
@staticmethod
def voxel_downsample_point_cloud_random(point_cloud, voxel_size=0.005, require_idx=False):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
if require_idx:
return downsampled_points, inverse
return downsampled_points
@staticmethod
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):

View File

@ -1,6 +1,7 @@
import os
import json
import time
import subprocess
import tempfile
import shutil
@ -68,9 +69,13 @@ class RenderUtil:
params_data_path = os.path.join(temp_dir, "params.json")
with open(params_data_path, 'w') as f:
json.dump(params, f)
start_time = time.time()
result = subprocess.run([
'blender', '-b', '-P', script_path, '--', temp_dir
], capture_output=True, text=True)
end_time = time.time()
print(result)
print(f"-- Time taken for blender: {end_time - start_time} seconds")
if result.returncode != 0:
print("Blender script failed:")
print(result.stderr)
@ -82,6 +87,7 @@ class RenderUtil:
cam_info["far_plane"],
binocular=True
)
start_time = time.time()
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
normal_L = DataLoadUtil.load_normal(path, binocular=True, left_only=True)
''' target points '''
@ -114,6 +120,7 @@ class RenderUtil:
if not has_points:
target_points = np.zeros((0, 3))
target_normals = np.zeros((0, 3))
end_time = time.time()
print(f"-- Time taken for processing: {end_time - start_time} seconds")
#import ipdb; ipdb.set_trace()
return target_points, target_normals