add global_pts_pipeline and pose_seq_encooder
This commit is contained in:
parent
ee74b825a6
commit
030bf55192
@ -5,4 +5,4 @@ from PytorchBoot.runners.trainer import DefaultTrainer
|
||||
class TrainApp:
|
||||
@staticmethod
|
||||
def start():
|
||||
DefaultTrainer("configs/server/train_config.yaml").run()
|
||||
DefaultTrainer("configs/server/server_train_config.yaml").run()
|
@ -3,11 +3,11 @@ runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cuda
|
||||
cuda_visible_devices: "1"
|
||||
cuda_visible_devices: "0"
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: overfit_w_global_feat
|
||||
name: overfit_w_global_feat_wo_local_pts_feat_small
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
@ -28,7 +28,7 @@ runner:
|
||||
#- OmniObject3d_test
|
||||
- OmniObject3d_val
|
||||
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
pipeline: nbv_reconstruction_global_pts_pipeline
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
@ -70,7 +70,7 @@ dataset:
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.005
|
||||
ratio: 1
|
||||
batch_size: 1
|
||||
num_workers: 12
|
||||
pts_num: 4096
|
||||
@ -78,7 +78,7 @@ dataset:
|
||||
|
||||
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
nbv_reconstruction_local_pts_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
@ -87,6 +87,15 @@ pipeline:
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
nbv_reconstruction_global_pts_pipeline:
|
||||
modules:
|
||||
pts_encoder: pointnet_encoder
|
||||
pose_seq_encoder: transformer_pose_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
|
||||
|
||||
|
||||
module:
|
||||
@ -105,10 +114,17 @@ module:
|
||||
num_layers: 3
|
||||
output_dim: 2048
|
||||
|
||||
transformer_pose_seq_encoder:
|
||||
pose_embed_dim: 256
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
output_dim: 1024
|
||||
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 3072
|
||||
main_feat_dim: 2048
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
95
core/global_pts_pipeline.py
Normal file
95
core/global_pts_pipeline.py
Normal file
@ -0,0 +1,95 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_global_pts_pipeline")
|
||||
class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.pose_seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
pts_feat_seq_list = []
|
||||
pose_feat_seq_list = []
|
||||
|
||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
|
||||
|
||||
main_feat = self.pose_seq_encoder.encode_sequence(pose_feat_seq_list)
|
||||
|
||||
if self.enable_global_scanned_feat:
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
|
||||
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
@ -5,12 +5,10 @@ import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline")
|
||||
class NBVReconstructionPipeline(nn.Module):
|
||||
@stereotype.pipeline("nbv_reconstruction_local_pts_pipeline")
|
||||
class NBVReconstructionLocalPointsPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionPipeline, self).__init__()
|
||||
super(NBVReconstructionLocalPointsPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
if self.type == namespace.Mode.TRAIN:
|
||||
scale_ratio = 10
|
||||
scale_ratio = 100
|
||||
self.datalist = self.datalist*scale_ratio
|
||||
if self.cache:
|
||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||
@ -83,6 +83,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
"label_idx": seq_idx,
|
||||
"scene_max_coverage_rate": scene_max_coverage_rate
|
||||
})
|
||||
break # TODO: for small version debug
|
||||
return datalist
|
||||
|
||||
def preprocess_cache(self):
|
||||
|
63
modules/transformer_pose_seq_encoder.py
Normal file
63
modules/transformer_pose_seq_encoder.py
Normal file
@ -0,0 +1,63 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
|
||||
|
||||
@stereotype.module("transformer_pose_seq_encoder")
|
||||
class TransformerPoseSequenceEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(TransformerPoseSequenceEncoder, self).__init__()
|
||||
self.config = config
|
||||
embed_dim = config["pose_embed_dim"]
|
||||
encoder_layer = nn.TransformerEncoderLayer(
|
||||
d_model=embed_dim,
|
||||
nhead=config["num_heads"],
|
||||
dim_feedforward=config["ffn_dim"],
|
||||
batch_first=True,
|
||||
)
|
||||
self.transformer_encoder = nn.TransformerEncoder(
|
||||
encoder_layer, num_layers=config["num_layers"]
|
||||
)
|
||||
self.fc = nn.Linear(embed_dim, config["output_dim"])
|
||||
|
||||
def encode_sequence(self, pose_embedding_list_batch):
|
||||
|
||||
lengths = []
|
||||
|
||||
for pose_embedding_list in pose_embedding_list_batch:
|
||||
lengths.append(len(pose_embedding_list))
|
||||
|
||||
combined_tensor = pad_sequence(pose_embedding_list_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
|
||||
|
||||
max_len = max(lengths)
|
||||
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool).to(combined_tensor.device)
|
||||
|
||||
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
|
||||
final_feature = transformer_output.mean(dim=1)
|
||||
final_output = self.fc(final_feature)
|
||||
|
||||
return final_output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
config = {
|
||||
"pose_embed_dim": 256,
|
||||
"num_heads": 4,
|
||||
"ffn_dim": 256,
|
||||
"num_layers": 3,
|
||||
"output_dim": 1024,
|
||||
}
|
||||
|
||||
encoder = TransformerPoseSequenceEncoder(config)
|
||||
seq_len = [5, 8, 9, 4]
|
||||
batch_size = 4
|
||||
|
||||
pose_embedding_list_batch = [
|
||||
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
|
||||
]
|
||||
output_feature = encoder.encode_sequence(
|
||||
pose_embedding_list_batch
|
||||
)
|
||||
print("Encoded Feature:", output_feature)
|
||||
print("Feature Shape:", output_feature.shape)
|
Loading…
x
Reference in New Issue
Block a user