add global_pts_pipeline and pose_seq_encooder

This commit is contained in:
hofee 2024-09-25 09:31:22 +00:00
parent ee74b825a6
commit 030bf55192
9 changed files with 186 additions and 13 deletions

View File

@ -5,4 +5,4 @@ from PytorchBoot.runners.trainer import DefaultTrainer
class TrainApp:
@staticmethod
def start():
DefaultTrainer("configs/server/train_config.yaml").run()
DefaultTrainer("configs/server/server_train_config.yaml").run()

View File

@ -3,11 +3,11 @@ runner:
general:
seed: 0
device: cuda
cuda_visible_devices: "1"
cuda_visible_devices: "0"
parallel: False
experiment:
name: overfit_w_global_feat
name: overfit_w_global_feat_wo_local_pts_feat_small
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
@ -28,7 +28,7 @@ runner:
#- OmniObject3d_test
- OmniObject3d_val
pipeline: nbv_reconstruction_pipeline
pipeline: nbv_reconstruction_global_pts_pipeline
dataset:
OmniObject3d_train:
@ -70,7 +70,7 @@ dataset:
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.005
ratio: 1
batch_size: 1
num_workers: 12
pts_num: 4096
@ -78,7 +78,7 @@ dataset:
pipeline:
nbv_reconstruction_pipeline:
nbv_reconstruction_local_pts_pipeline:
modules:
pts_encoder: pointnet_encoder
seq_encoder: transformer_seq_encoder
@ -87,6 +87,15 @@ pipeline:
eps: 1e-5
global_scanned_feat: True
nbv_reconstruction_global_pts_pipeline:
modules:
pts_encoder: pointnet_encoder
pose_seq_encoder: transformer_pose_seq_encoder
pose_encoder: pose_encoder
view_finder: gf_view_finder
eps: 1e-5
global_scanned_feat: True
module:
@ -105,10 +114,17 @@ module:
num_layers: 3
output_dim: 2048
transformer_pose_seq_encoder:
pose_embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
output_dim: 1024
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 3072
main_feat_dim: 2048
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False

View File

@ -0,0 +1,95 @@
import torch
from torch import nn
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log
@stereotype.pipeline("nbv_reconstruction_global_pts_pipeline")
class NBVReconstructionGlobalPointsPipeline(nn.Module):
def __init__(self, config):
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
self.config = config
self.module_config = config["modules"]
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
self.pose_seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_seq_encoder"])
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data):
mode = data["mode"]
if mode == namespace.Mode.TRAIN:
return self.forward_train(data)
elif mode == namespace.Mode.TEST:
return self.forward_test(data)
else:
Log.error("Unknown mode: {}".format(mode), True)
def pertube_data(self, gt_delta_9d):
bs = gt_delta_9d.shape[0]
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
random_t = random_t.unsqueeze(-1)
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
std = std.view(-1, 1)
z = torch.randn_like(gt_delta_9d)
perturbed_x = mu + z * std
target_score = - z * std / (std ** 2)
return perturbed_x, random_t, target_score, std
def forward_train(self, data):
main_feat = self.get_main_feat(data)
''' get std '''
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
input_data = {
"sampled_pose": perturbed_x,
"t": random_t,
"main_feat": main_feat,
}
estimated_score = self.view_finder(input_data)
output = {
"estimated_score": estimated_score,
"target_score": target_score,
"std": std
}
return output
def forward_test(self,data):
main_feat = self.get_main_feat(data)
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
result = {
"pred_pose_9d": estimated_delta_rot_9d,
"in_process_sample": in_process_sample
}
return result
def get_main_feat(self, data):
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
device = next(self.parameters()).device
pts_feat_seq_list = []
pose_feat_seq_list = []
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
main_feat = self.pose_seq_encoder.encode_sequence(pose_feat_seq_list)
if self.enable_global_scanned_feat:
combined_scanned_pts_batch = data['combined_scanned_pts']
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)
return main_feat

View File

@ -5,12 +5,10 @@ import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log
from utils.pts import PtsUtil
@stereotype.pipeline("nbv_reconstruction_pipeline")
class NBVReconstructionPipeline(nn.Module):
@stereotype.pipeline("nbv_reconstruction_local_pts_pipeline")
class NBVReconstructionLocalPointsPipeline(nn.Module):
def __init__(self, config):
super(NBVReconstructionPipeline, self).__init__()
super(NBVReconstructionLocalPointsPipeline, self).__init__()
self.config = config
self.module_config = config["modules"]
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])

View File

@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN:
scale_ratio = 10
scale_ratio = 100
self.datalist = self.datalist*scale_ratio
if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
@ -83,6 +83,7 @@ class NBVReconstructionDataset(BaseDataset):
"label_idx": seq_idx,
"scene_max_coverage_rate": scene_max_coverage_rate
})
break # TODO: for small version debug
return datalist
def preprocess_cache(self):

View File

@ -0,0 +1,63 @@
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
import PytorchBoot.stereotype as stereotype
@stereotype.module("transformer_pose_seq_encoder")
class TransformerPoseSequenceEncoder(nn.Module):
def __init__(self, config):
super(TransformerPoseSequenceEncoder, self).__init__()
self.config = config
embed_dim = config["pose_embed_dim"]
encoder_layer = nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=config["num_heads"],
dim_feedforward=config["ffn_dim"],
batch_first=True,
)
self.transformer_encoder = nn.TransformerEncoder(
encoder_layer, num_layers=config["num_layers"]
)
self.fc = nn.Linear(embed_dim, config["output_dim"])
def encode_sequence(self, pose_embedding_list_batch):
lengths = []
for pose_embedding_list in pose_embedding_list_batch:
lengths.append(len(pose_embedding_list))
combined_tensor = pad_sequence(pose_embedding_list_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
max_len = max(lengths)
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool).to(combined_tensor.device)
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
final_feature = transformer_output.mean(dim=1)
final_output = self.fc(final_feature)
return final_output
if __name__ == "__main__":
config = {
"pose_embed_dim": 256,
"num_heads": 4,
"ffn_dim": 256,
"num_layers": 3,
"output_dim": 1024,
}
encoder = TransformerPoseSequenceEncoder(config)
seq_len = [5, 8, 9, 4]
batch_size = 4
pose_embedding_list_batch = [
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
]
output_feature = encoder.encode_sequence(
pose_embedding_list_batch
)
print("Encoded Feature:", output_feature)
print("Feature Shape:", output_feature.shape)