import numpy as np import open3d as o3d import torch from scipy.spatial import cKDTree class PtsUtil: @staticmethod def voxel_downsample_point_cloud(point_cloud, voxel_size=0.005): o3d_pc = o3d.geometry.PointCloud() o3d_pc.points = o3d.utility.Vector3dVector(point_cloud) downsampled_pc = o3d_pc.voxel_down_sample(voxel_size) return np.asarray(downsampled_pc.points) @staticmethod def random_downsample_point_cloud(point_cloud, num_points, require_idx=False): if point_cloud.shape[0] == 0: if require_idx: return point_cloud, np.array([]) return point_cloud idx = np.random.choice(len(point_cloud), num_points, replace=True) if require_idx: return point_cloud[idx], idx return point_cloud[idx] @staticmethod def fps_downsample_point_cloud(point_cloud, num_points, require_idx=False): N = point_cloud.shape[0] mask = np.zeros(N, dtype=bool) sampled_indices = np.zeros(num_points, dtype=int) sampled_indices[0] = np.random.randint(0, N) distances = np.linalg.norm(point_cloud - point_cloud[sampled_indices[0]], axis=1) for i in range(1, num_points): farthest_index = np.argmax(distances) sampled_indices[i] = farthest_index mask[farthest_index] = True new_distances = np.linalg.norm(point_cloud - point_cloud[farthest_index], axis=1) distances = np.minimum(distances, new_distances) sampled_points = point_cloud[sampled_indices] if require_idx: return sampled_points, sampled_indices return sampled_points @staticmethod def random_downsample_point_cloud_tensor(point_cloud, num_points): idx = torch.randint(0, len(point_cloud), (num_points,)) return point_cloud[idx] @staticmethod def voxelize_points(points, voxel_size): voxel_indices = np.floor(points / voxel_size).astype(np.int32) unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True) return unique_voxels @staticmethod def transform_point_cloud(points, pose_mat): points_h = np.concatenate([points, np.ones((points.shape[0], 1))], axis=1) points_h = np.dot(pose_mat, points_h.T).T return points_h[:, :3] @staticmethod def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005, require_idx=False): voxels_L, indices_L = PtsUtil.voxelize_points(point_cloud_L, voxel_size) voxels_R, _ = PtsUtil.voxelize_points(point_cloud_R, voxel_size) voxel_indices_L = voxels_L.view([("", voxels_L.dtype)] * 3) voxel_indices_R = voxels_R.view([("", voxels_R.dtype)] * 3) overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R) mask_L = np.isin( indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0] ) overlapping_points = point_cloud_L[mask_L] if require_idx: return overlapping_points, mask_L return overlapping_points @staticmethod def filter_points(points, points_normals, cam_pose, voxel_size=0.002, theta=45, z_range=(0.2, 0.45)): """ filter with z range """ points_cam = PtsUtil.transform_point_cloud(points, np.linalg.inv(cam_pose)) idx = (points_cam[:, 2] > z_range[0]) & (points_cam[:, 2] < z_range[1]) z_filtered_points = points[idx] """ filter with normal """ sampled_points = PtsUtil.voxel_downsample_point_cloud(z_filtered_points, voxel_size) kdtree = cKDTree(points_normals[:,:3]) _, indices = kdtree.query(sampled_points) nearest_points = points_normals[indices] normals = nearest_points[:, 3:] camera_axis = -cam_pose[:3, 2] normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True) cos_theta = np.dot(normals_normalized, camera_axis) theta_rad = np.deg2rad(theta) idx = cos_theta > np.cos(theta_rad) filtered_sampled_points= sampled_points[idx] return filtered_sampled_points[:, :3]