recover tool script

This commit is contained in:
hofee 2024-09-20 16:23:11 +08:00
parent b5703cdc0e
commit caab57e998
2 changed files with 98 additions and 37 deletions

View File

@ -39,10 +39,34 @@ class DataLoadUtil:
np.savetxt(model_path, model_points)
@staticmethod
def load_original_model_points(model_dir, object_name):
def load_mesh_at(model_dir, object_name, world_object_pose):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
mesh = trimesh.load(model_path)
return mesh.vertices
mesh.apply_transform(world_object_pose)
return mesh
@staticmethod
def save_mesh_at(model_dir, output_dir, object_name, scene_name, world_object_pose):
mesh = DataLoadUtil.load_mesh_at(model_dir, object_name, world_object_pose)
model_path = os.path.join(output_dir, scene_name, "world_mesh.obj")
mesh.export(model_path)
@staticmethod
def save_target_mesh_at_world_space(root, model_dir, scene_name):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
target_name = scene_info["target_name"]
transformation = scene_info[target_name]
location = transformation["location"]
rotation_euler = transformation["rotation_euler"]
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
pose_mat[:3, 3] = location
mesh = DataLoadUtil.load_mesh_at(model_dir, target_name, pose_mat)
mesh_dir = os.path.join(root, scene_name, "mesh")
if not os.path.exists(mesh_dir):
os.makedirs(mesh_dir)
model_path = os.path.join(mesh_dir, "world_target_mesh.obj")
mesh.export(model_path)
@staticmethod
def load_scene_info(root, scene_name):
@ -63,7 +87,7 @@ class DataLoadUtil:
return pose_mat
@staticmethod
def load_depth(path, min_depth=0.01,max_depth=5.0,binocular=True):
def load_depth(path, min_depth=0.01,max_depth=5.0,binocular=False):
def load_depth_from_real_path(real_path, min_depth, max_depth):
depth = cv2.imread(real_path, cv2.IMREAD_UNCHANGED)
@ -85,7 +109,7 @@ class DataLoadUtil:
return depth_meters
@staticmethod
def load_seg(path, binocular=True):
def load_seg(path, binocular=False):
if binocular:
def clean_mask(mask_image):
green = [0, 255, 0, 255]
@ -94,7 +118,6 @@ class DataLoadUtil:
mask_image = np.where(np.abs(mask_image - green) <= threshold, green, mask_image)
mask_image = np.where(np.abs(mask_image - red) <= threshold, red, mask_image)
return mask_image
mask_path_L = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_L.png")
mask_image_L = clean_mask(cv2.imread(mask_path_L, cv2.IMREAD_UNCHANGED))
mask_path_R = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_R.png")
@ -102,7 +125,7 @@ class DataLoadUtil:
return mask_image_L, mask_image_R
else:
mask_path = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + ".png")
mask_image = cv2.imread(mask_path)
mask_image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
return mask_image
@staticmethod
@ -117,8 +140,6 @@ class DataLoadUtil:
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
return rgb_image
@staticmethod
def cam_pose_transformation(cam_pose_before):
offset = np.asarray([
@ -173,38 +194,45 @@ class DataLoadUtil:
}
@staticmethod
def get_point_cloud_world_from_path(path, binocular=True):
def get_target_point_cloud_world_from_path(path, binocular=False, random_downsample_N=65536, voxel_size = 0.005, target_mask_label=(0,255,0,255)):
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
if binocular:
voxel_size = 0.005
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
point_cloud_L = DataLoadUtil.get_target_point_cloud(depth_L, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask_L)['points_world']
point_cloud_R = DataLoadUtil.get_target_point_cloud(depth_R, cam_info['cam_intrinsic'], cam_info['cam_to_world_R'], mask_R)['points_world']
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 16384)
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 16384)
voxel_indices_L = np.floor(point_cloud_L / voxel_size).astype(np.int32)
voxel_indices_R = np.floor(point_cloud_R / voxel_size).astype(np.int32)
voxels_L = set(map(tuple, voxel_indices_L))
voxels_R = set(map(tuple, voxel_indices_R))
overlap_voxels = voxels_L.intersection(voxels_R)
overlap_points = point_cloud_L[np.array([tuple(v) in overlap_voxels for v in voxel_indices_L])]
point_cloud_L = DataLoadUtil.get_target_point_cloud(depth_L, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask_L, target_mask_label)['points_world']
point_cloud_R = DataLoadUtil.get_target_point_cloud(depth_R, cam_info['cam_intrinsic'], cam_info['cam_to_world_R'], mask_R, target_mask_label)['points_world']
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, random_downsample_N)
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, random_downsample_N)
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size)
return overlap_points
else:
depth = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'])
mask = DataLoadUtil.load_seg(path)
point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask)['points_world']
return point_cloud
@staticmethod
def get_point_cloud_list_from_seq(root, scene_name, num_frames, binocular=False):
point_cloud_list = []
for frame_idx in range(num_frames):
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path, binocular)
point_cloud_list.append(point_cloud)
return point_cloud_list
def voxelize_points(points, voxel_size):
voxel_indices = np.floor(points / voxel_size).astype(np.int32)
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
return unique_voxels
@staticmethod
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005):
voxels_L, indices_L = DataLoadUtil.voxelize_points(point_cloud_L, voxel_size)
voxels_R, _ = DataLoadUtil.voxelize_points(point_cloud_R, voxel_size)
voxel_indices_L = voxels_L.view([('', voxels_L.dtype)]*3)
voxel_indices_R = voxels_R.view([('', voxels_R.dtype)]*3)
overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R)
mask_L = np.isin(indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0])
overlapping_points = point_cloud_L[mask_L]
return overlapping_points
@staticmethod
def load_points_normals(root, scene_name):
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
points_normals = np.loadtxt(points_path)
return points_normals

View File

@ -1,19 +1,52 @@
import numpy as np
import open3d as o3d
from pts import PtsUtil
from scipy.spatial import cKDTree
class ReconstructionUtil:
@staticmethod
def reconstruct_with_pts(pts):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(pts)
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.001, max_nn=30))
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9)
densities = np.asarray(densities)
vertices_to_remove = densities < np.quantile(densities, 0.03)
vertices_to_remove = densities < np.quantile(densities, 0.2)
mesh.remove_vertices_by_mask(vertices_to_remove)
return mesh
@staticmethod
def filter_points(points, points_normals, cam_pose, voxel_size=0.005, theta=45):
sampled_points = PtsUtil.voxel_downsample_point_cloud(points, voxel_size)
kdtree = cKDTree(points_normals[:,:3])
_, indices = kdtree.query(sampled_points)
nearest_points = points_normals[indices]
normals = nearest_points[:, 3:]
camera_axis = -cam_pose[:3, 2]
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
cos_theta = np.dot(normals_normalized, camera_axis)
theta_rad = np.deg2rad(theta)
filtered_sampled_points= sampled_points[cos_theta > np.cos(theta_rad)]
return filtered_sampled_points[:, :3]
if __name__ == "__main__":
path = r"C:\Document\Local Project\nbv_rec_visualize\mis\sampled_model_points.txt"
test_pts = np.loadtxt(path)
mesh = ReconstructionUtil.reconstruct_with_pts(test_pts)
o3d.io.write_triangle_mesh("output_mesh.obj", mesh)
import os
root = "/media/hofee/data/project/python/nbv_reconstruction/nbv_rec_visualize/data/sample/"
name = "google_scan-box_0106"
model_path = os.path.join(root, name, "sampled_model_points.txt")
rec_path = os.path.join(root, name, "best_reconstructed_pts.txt")
model_pts = np.loadtxt(model_path)
rec_pts = np.loadtxt(rec_path)
import time
start = time.time()
model_mesh = ReconstructionUtil.reconstruct_with_pts(model_pts)
end = time.time()
print(f"Time taken to reconstruct model: {end-start}")
rec_mesh = ReconstructionUtil.reconstruct_with_pts(rec_pts)
output_dir = "/media/hofee/data/project/python/nbv_reconstruction/nbv_rec_visualize/mis/output_test"
model_output_path = os.path.join(output_dir, f"{name}_model_mesh.obj")
rec_output_path = os.path.join(output_dir, f"{name}_rec_mesh.obj")
o3d.io.write_triangle_mesh(model_output_path, model_mesh)
o3d.io.write_triangle_mesh(rec_output_path, rec_mesh)