update backend

This commit is contained in:
hofee 2024-09-23 15:33:12 +08:00
parent 7c713a9c4c
commit 16d1f8ab67
3 changed files with 131 additions and 23 deletions

48
app.py
View File

@ -37,15 +37,59 @@ def get_scene_list():
scene_list = [d for d in os.listdir(dataset_path) if os.path.isdir(os.path.join(dataset_path, d))]
return jsonify({"scene_list": scene_list, "success": True})
@app.route('/get_label_list', methods=['POST'])
def get_label_list():
data = request.json
dataset_name = data.get('dataset_name')
scene_name = data.get("scene_name")
scene_dir = os.path.join(ROOT, dataset_name, scene_name)
label_dir = os.path.join(scene_dir, "label")
if not os.path.exists(scene_dir):
print(f"Scene not found: {scene_dir}")
return jsonify({"error": "Scene not found"}), 404
label_list = []
global_min_coverage_rate = 1
global_max_coverage_rate = 0
global_total_coverage_rate = 0
for label_file in os.listdir(label_dir):
if label_file.endswith(".json"):
label_path = os.path.join(label_dir, label_file)
with open(label_path, 'r') as f:
label_data = json.load(f)
max_coveraget_rate = label_data.get('max_coverage_rate')
if max_coveraget_rate > global_max_coverage_rate:
global_max_coverage_rate = max_coveraget_rate
if max_coveraget_rate < global_min_coverage_rate:
global_min_coverage_rate = max_coveraget_rate
label_list.append({
"label_name": label_file,
"max_coverage_rate": round(max_coveraget_rate*100,3)
})
global_total_coverage_rate += max_coveraget_rate
if len(label_list) == 0:
global_mean_coverage_rate = 0
else:
global_mean_coverage_rate = global_total_coverage_rate / len(label_list)
return jsonify({"label_list": label_list,
"total_max_coverage_rate": round(global_max_coverage_rate*100, 3),
"total_min_coverage_rate": round(global_min_coverage_rate*100, 3),
"total_mean_coverage_rate": round(global_mean_coverage_rate*100, 3),
"success": True})
@app.route('/get_scene_info', methods=['POST'])
def get_scene_info():
data = request.json
dataset_name = data.get('dataset_name')
scene_name = data.get('scene_name')
label_name = data.get('label_name')
scene_path = os.path.join(ROOT, dataset_name, scene_name)
camera_params_path = os.path.join(scene_path, 'camera_params')
label_json_path = os.path.join(scene_path, 'label.json')
label_json_path = os.path.join(scene_path, "label", label_name)
if not os.path.exists(scene_path) or not os.path.exists(label_json_path):
@ -228,4 +272,4 @@ def analysis_inference_result():
return jsonify(res)
if __name__ == '__main__':
app.run(debug=True, port=13333)
app.run(debug=True, port=13333,host="0.0.0.0")

View File

@ -3,23 +3,32 @@ import numpy as np
import json
import cv2
import trimesh
import torch
from pts import PtsUtil
class DataLoadUtil:
DISPLAY_TABLE_POSITION = np.asarray([0,0,0.895])
@staticmethod
def get_path(root, scene_name, frame_idx):
path = os.path.join(root, scene_name, f"{frame_idx}")
return path
@staticmethod
def get_label_path(root, scene_name):
path = os.path.join(root,scene_name, f"label.json")
def get_label_num(root, scene_name):
label_dir = os.path.join(root,scene_name,"label")
return len(os.listdir(label_dir))
@staticmethod
def get_label_path(root, scene_name, seq_idx):
label_dir = os.path.join(root,scene_name,"label")
if not os.path.exists(label_dir):
os.makedirs(label_dir)
path = os.path.join(label_dir,f"{seq_idx}.json")
return path
@staticmethod
def get_sampled_model_points_path(root, scene_name):
path = os.path.join(root,scene_name, f"sampled_model_points.txt")
def get_label_path_old(root, scene_name):
path = os.path.join(root,scene_name,"label.json")
return path
@staticmethod
@ -27,17 +36,6 @@ class DataLoadUtil:
camera_params_path = os.path.join(root, scene_name, "camera_params")
return len(os.listdir(camera_params_path))
@staticmethod
def load_downsampled_world_model_points(root, scene_name):
model_path = DataLoadUtil.get_sampled_model_points_path(root, scene_name)
model_points = np.loadtxt(model_path)
return model_points
@staticmethod
def save_downsampled_world_model_points(root, scene_name, model_points):
model_path = DataLoadUtil.get_sampled_model_points_path(root, scene_name)
np.savetxt(model_path, model_points)
@staticmethod
def load_mesh_at(model_dir, object_name, world_object_pose):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
@ -45,6 +43,15 @@ class DataLoadUtil:
mesh.apply_transform(world_object_pose)
return mesh
@staticmethod
def get_bbox_diag(model_dir, object_name):
model_path = os.path.join(model_dir, object_name, "mesh.obj")
mesh = trimesh.load(model_path)
bbox = mesh.bounding_box.extents
diagonal_length = np.linalg.norm(bbox)
return diagonal_length
@staticmethod
def save_mesh_at(model_dir, output_dir, object_name, scene_name, world_object_pose):
mesh = DataLoadUtil.load_mesh_at(model_dir, object_name, world_object_pose)
@ -52,11 +59,14 @@ class DataLoadUtil:
mesh.export(model_path)
@staticmethod
def save_target_mesh_at_world_space(root, model_dir, scene_name):
def save_target_mesh_at_world_space(root, model_dir, scene_name, display_table_as_world_space_origin=True):
scene_info = DataLoadUtil.load_scene_info(root, scene_name)
target_name = scene_info["target_name"]
transformation = scene_info[target_name]
location = transformation["location"]
if display_table_as_world_space_origin:
location = transformation["location"] - DataLoadUtil.DISPLAY_TABLE_POSITION
else:
location = transformation["location"]
rotation_euler = transformation["rotation_euler"]
pose_mat = trimesh.transformations.euler_matrix(*rotation_euler)
pose_mat[:3, 3] = location
@ -140,6 +150,12 @@ class DataLoadUtil:
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
return rgb_image
@staticmethod
def load_from_preprocessed_pts(path):
npy_path = os.path.join(os.path.dirname(path), "points", os.path.basename(path) + ".npy")
pts = np.load(npy_path)
return pts
@staticmethod
def cam_pose_transformation(cam_pose_before):
offset = np.asarray([
@ -151,12 +167,16 @@ class DataLoadUtil:
return cam_pose_after
@staticmethod
def load_cam_info(path, binocular=False):
def load_cam_info(path, binocular=False, display_table_as_world_space_origin=True):
camera_params_path = os.path.join(os.path.dirname(path), "camera_params", os.path.basename(path) + ".json")
with open(camera_params_path, 'r') as f:
label_data = json.load(f)
cam_to_world = np.asarray(label_data["extrinsic"])
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
world_to_display_table = np.eye(4)
world_to_display_table[:3, 3] = - DataLoadUtil.DISPLAY_TABLE_POSITION
if display_table_as_world_space_origin:
cam_to_world = np.dot(world_to_display_table, cam_to_world)
cam_intrinsic = np.asarray(label_data["intrinsic"])
cam_info = {
"cam_to_world": cam_to_world,
@ -167,9 +187,27 @@ class DataLoadUtil:
if binocular:
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
cam_to_world_R = DataLoadUtil.cam_pose_transformation(cam_to_world_R)
cam_to_world_O = np.asarray(label_data["extrinsic_cam_object"])
cam_to_world_O = DataLoadUtil.cam_pose_transformation(cam_to_world_O)
if display_table_as_world_space_origin:
cam_to_world_O = np.dot(world_to_display_table, cam_to_world_O)
cam_to_world_R = np.dot(world_to_display_table, cam_to_world_R)
cam_info["cam_to_world_O"] = cam_to_world_O
cam_info["cam_to_world_R"] = cam_to_world_R
return cam_info
@staticmethod
def get_real_cam_O_from_cam_L(cam_L, cam_O_to_cam_L, display_table_as_world_space_origin=True):
if isinstance(cam_L, torch.Tensor):
cam_L = cam_L.cpu().numpy()
nO_to_display_table_pose = cam_L @ cam_O_to_cam_L
if display_table_as_world_space_origin:
display_table_to_world = np.eye(4)
display_table_to_world[:3, 3] = DataLoadUtil.DISPLAY_TABLE_POSITION
nO_to_world_pose = np.dot(display_table_to_world, nO_to_display_table_pose)
nO_to_world_pose = DataLoadUtil.cam_pose_transformation(nO_to_world_pose)
return nO_to_world_pose
@staticmethod
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0,255,0,255)):
h, w = depth.shape
@ -192,6 +230,24 @@ class DataLoadUtil:
"points_world": target_points_world,
"points_camera": target_points_camera
}
@staticmethod
def get_point_cloud(depth, cam_intrinsic, cam_extrinsic):
h, w = depth.shape
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
z = depth
x = (i - cam_intrinsic[0, 2]) * z / cam_intrinsic[0, 0]
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
points_camera_aug = np.concatenate([points_camera, np.ones((points_camera.shape[0], 1))], axis=-1)
points_world = np.dot(cam_extrinsic, points_camera_aug.T).T[:, :3]
return {
"points_world": points_world,
"points_camera": points_camera
}
@staticmethod
def get_target_point_cloud_world_from_path(path, binocular=False, random_downsample_N=65536, voxel_size = 0.005, target_mask_label=(0,255,0,255)):
@ -232,7 +288,9 @@ class DataLoadUtil:
return overlapping_points
@staticmethod
def load_points_normals(root, scene_name):
def load_points_normals(root, scene_name, display_table_as_world_space_origin=True):
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
points_normals = np.loadtxt(points_path)
if display_table_as_world_space_origin:
points_normals[:,:3] = points_normals[:,:3] - DataLoadUtil.DISPLAY_TABLE_POSITION
return points_normals

8
pts.py
View File

@ -1,5 +1,6 @@
import numpy as np
import open3d as o3d
import torch
class PtsUtil:
@ -18,5 +19,10 @@ class PtsUtil:
@staticmethod
def random_downsample_point_cloud(point_cloud, num_points):
idx = np.random.choice(len(point_cloud), num_points, replace=False)
idx = np.random.choice(len(point_cloud), num_points, replace=True)
return point_cloud[idx]
@staticmethod
def random_downsample_point_cloud_tensor(point_cloud, num_points):
idx = torch.randint(0, len(point_cloud), (num_points,))
return point_cloud[idx]