45 lines
2.3 KiB
Python
45 lines
2.3 KiB
Python
|
|
import os
|
|
import json
|
|
import subprocess
|
|
import tempfile
|
|
import shutil
|
|
from utils.data_load import DataLoadUtil
|
|
from utils.pts_util import PtsUtil
|
|
class RenderUtil:
|
|
|
|
@staticmethod
|
|
def render_pts(cam_pose, object_name, script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None, require_full_scene=False):
|
|
nO_to_world_pose = DataLoadUtil.get_real_cam_O_from_cam_L(cam_pose, nO_to_nL_pose, scene_path=scene_path)
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
params = {
|
|
"cam_pose": nO_to_world_pose.tolist(),
|
|
"object_name": scene_path
|
|
}
|
|
params_data_path = os.path.join(temp_dir, "params.json")
|
|
with open(params_data_path, 'w') as f:
|
|
json.dump(params, f)
|
|
result = subprocess.run([
|
|
'blender', '-b', '-P', script_path, '--', temp_dir
|
|
], capture_output=True, text=True)
|
|
if result.returncode != 0:
|
|
print("Blender script failed:")
|
|
print(result.stderr)
|
|
return None
|
|
path = os.path.join(temp_dir, "tmp")
|
|
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
|
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
|
|
|
filtered_point_cloud = PtsUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
|
|
full_scene_point_cloud = None
|
|
if require_full_scene:
|
|
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_params['near_plane'], cam_params['far_plane'], binocular=True)
|
|
point_cloud_L = DataLoadUtil.get_point_cloud(depth_L, cam_params['cam_intrinsic'], cam_params['cam_to_world'])['points_world']
|
|
point_cloud_R = DataLoadUtil.get_point_cloud(depth_R, cam_params['cam_intrinsic'], cam_params['cam_to_world_R'])['points_world']
|
|
|
|
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 65536)
|
|
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
|
|
full_scene_point_cloud = PtsUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
|
|
|
|
|
|
return filtered_point_cloud, full_scene_point_cloud |