2024-10-09 16:13:22 +00:00

197 lines
5.6 KiB
Python
Executable File

import torch.nn as nn
try:
import open3d as o3d
except ImportError:
raise ImportError("Please install open3d with `pip install open3d`.")
import MinkowskiEngine as ME
from MinkowskiEngine.modules.resnet_block import BasicBlock, Bottleneck
class ResNetBase(nn.Module):
BLOCK = None
LAYERS = ()
INIT_DIM = 64
PLANES = (64, 128, 256, 512)
def __init__(self, in_channels, out_channels, D=3):
nn.Module.__init__(self)
self.D = D
assert self.BLOCK is not None
self.network_initialization(in_channels, out_channels, D)
self.weight_initialization()
def network_initialization(self, in_channels, out_channels, D):
self.inplanes = self.INIT_DIM
self.conv1 = nn.Sequential(
ME.MinkowskiConvolution(
in_channels, self.inplanes, kernel_size=3, stride=2, dimension=D
),
ME.MinkowskiInstanceNorm(self.inplanes),
ME.MinkowskiReLU(inplace=True),
ME.MinkowskiMaxPooling(kernel_size=2, stride=2, dimension=D),
)
self.layer1 = self._make_layer(
self.BLOCK, self.PLANES[0], self.LAYERS[0], stride=2
)
self.layer2 = self._make_layer(
self.BLOCK, self.PLANES[1], self.LAYERS[1], stride=2
)
self.layer3 = self._make_layer(
self.BLOCK, self.PLANES[2], self.LAYERS[2], stride=2
)
self.layer4 = self._make_layer(
self.BLOCK, self.PLANES[3], self.LAYERS[3], stride=2
)
self.conv5 = nn.Sequential(
ME.MinkowskiDropout(),
ME.MinkowskiConvolution(
self.inplanes, self.inplanes, kernel_size=3, stride=3, dimension=D
),
ME.MinkowskiInstanceNorm(self.inplanes),
ME.MinkowskiGELU(),
)
self.glob_pool = ME.MinkowskiGlobalMaxPooling()
self.final = ME.MinkowskiLinear(self.inplanes, out_channels, bias=True)
def weight_initialization(self):
for m in self.modules():
if isinstance(m, ME.MinkowskiConvolution):
ME.utils.kaiming_normal_(m.kernel, mode="fan_out", nonlinearity="relu")
if isinstance(m, ME.MinkowskiBatchNorm):
nn.init.constant_(m.bn.weight, 1)
nn.init.constant_(m.bn.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, bn_momentum=0.1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
ME.MinkowskiConvolution(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
dimension=self.D,
),
ME.MinkowskiBatchNorm(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes,
planes,
stride=stride,
dilation=dilation,
downsample=downsample,
dimension=self.D,
)
)
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(
self.inplanes, planes, stride=1, dilation=dilation, dimension=self.D
)
)
return nn.Sequential(*layers)
def forward(self, x: ME.SparseTensor):
x = self.conv1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.conv5(x)
x = self.glob_pool(x)
return self.final(x)
class ResNet14(ResNetBase):
BLOCK = BasicBlock
LAYERS = (1, 1, 1, 1)
class ResNet18(ResNetBase):
BLOCK = BasicBlock
LAYERS = (2, 2, 2, 2)
class ResNet34(ResNetBase):
BLOCK = BasicBlock
LAYERS = (3, 4, 6, 3)
class ResNet50(ResNetBase):
BLOCK = Bottleneck
LAYERS = (3, 4, 6, 3)
class ResNet101(ResNetBase):
BLOCK = Bottleneck
LAYERS = (3, 4, 23, 3)
class ResFieldNetBase(ResNetBase):
def network_initialization(self, in_channels, out_channels, D):
field_ch = 32
field_ch2 = 64
self.field_network = nn.Sequential(
ME.MinkowskiSinusoidal(in_channels, field_ch),
ME.MinkowskiBatchNorm(field_ch),
ME.MinkowskiReLU(inplace=True),
ME.MinkowskiLinear(field_ch, field_ch),
ME.MinkowskiBatchNorm(field_ch),
ME.MinkowskiReLU(inplace=True),
ME.MinkowskiToSparseTensor(),
)
self.field_network2 = nn.Sequential(
ME.MinkowskiSinusoidal(field_ch + in_channels, field_ch2),
ME.MinkowskiBatchNorm(field_ch2),
ME.MinkowskiReLU(inplace=True),
ME.MinkowskiLinear(field_ch2, field_ch2),
ME.MinkowskiBatchNorm(field_ch2),
ME.MinkowskiReLU(inplace=True),
ME.MinkowskiToSparseTensor(),
)
ResNetBase.network_initialization(self, field_ch2, out_channels, D)
def forward(self, x: ME.TensorField):
otensor = self.field_network(x)
otensor2 = self.field_network2(otensor.cat_slice(x))
return ResNetBase.forward(self, otensor2)
class ResFieldNet14(ResFieldNetBase):
BLOCK = BasicBlock
LAYERS = (1, 1, 1, 1)
class ResFieldNet18(ResFieldNetBase):
BLOCK = BasicBlock
LAYERS = (2, 2, 2, 2)
class ResFieldNet34(ResFieldNetBase):
BLOCK = BasicBlock
LAYERS = (3, 4, 6, 3)
class ResFieldNet50(ResFieldNetBase):
BLOCK = Bottleneck
LAYERS = (3, 4, 6, 3)
class ResFieldNet101(ResFieldNetBase):
BLOCK = Bottleneck
LAYERS = (3, 4, 23, 3)