32 lines
1.1 KiB
Python
Executable File
32 lines
1.1 KiB
Python
Executable File
__author__ = 'mhgou'
|
|
__version__ = '1.0'
|
|
|
|
# GraspNetAPI example for evaluate grasps for a scene.
|
|
# change the graspnet_root path
|
|
import numpy as np
|
|
from graspnetAPI import GraspNetEval
|
|
|
|
####################################################################
|
|
graspnet_root = '/home/gmh/graspnet' # ROOT PATH FOR GRASPNET
|
|
dump_folder = '/home/gmh/git/rgbd_graspnet/dump_affordance_iounan/' # ROOT PATH FOR DUMP
|
|
####################################################################
|
|
|
|
sceneId = 121
|
|
camera = 'kinect'
|
|
ge_k = GraspNetEval(root = graspnet_root, camera = 'kinect', split = 'test')
|
|
ge_r = GraspNetEval(root = graspnet_root, camera = 'realsense', split = 'test')
|
|
|
|
# eval a single scene
|
|
print('Evaluating scene:{}, camera:{}'.format(sceneId, camera))
|
|
acc = ge_k.eval_scene(scene_id = sceneId, dump_folder = dump_folder)
|
|
np_acc = np.array(acc)
|
|
print('mean accuracy:{}'.format(np.mean(np_acc)))
|
|
|
|
# # eval all data for kinect
|
|
# print('Evaluating kinect')
|
|
# res, ap = ge_k.eval_all(dump_folder, proc = 24)
|
|
|
|
# # eval 'seen' split for realsense
|
|
# print('Evaluating realsense')
|
|
# res, ap = ge_r.eval_seen(dump_folder, proc = 24)
|