# Train config file settings: general: seed: 0 cuda_visible_devices: "0,1,2,3,4,5,6,7" device: cuda parallel: True test_dir: "" print: True web_api: host: "127.0.0.1" port: 8888 experiment: name: test_score_eval root_dir: "experiments" use_checkpoint: False epoch: -1 # -1 stands for last epoch max_epochs: 5000 save_checkpoint_interval: 1 test_first: True use_cache: False small_batch_overfit: False small_batch_size: 100 small_batch_times: 100 train: optimizer: type: adam lr: 0.0001 losses: # loss type : weight gf_loss: 1.0 dataset: name: synthetic_train_sample source: nbv1 data_type: sample synthetic: True ratio: 1.0 batch_size: 80 num_workers: 8 test: batch_size: 16 frequency: 1 dataset_list: - name: synthetic_test_sample source: nbv1 data_type: sample synthetic: True eval_list: - delta_pose - grasp_improvement ratio: 0.01 batch_size: 16 num_workers: 8 pipeline: # module_type: name pts_encoder: pointnet view_finder: gradient_field rgb_encoder: dinov2 datasets: general: data_dir: "/mnt/d/Datasets" score_limit: 0.3 target_pts_num: 1024 scene_pts_num: 16384 canonical: False image_size: 480 modules: general: pts_channels: 3 feature_dim: 1024 per_point_feature: False pts_encoder: pointnet: pointnet++: params_name: light pointnet++rgb: params_name: light target_layer: 3 rgb_feat_dim: 384 view_finder: gradient_field: pose_mode: rot_matrix regression_head: Rx_Ry sample_mode: ode sample_repeat: 50 sampling_steps: 500 sde_mode: ve rgb_encoder: dinov2: model_name: "dinov2_vits14"