2024-09-13 16:58:34 +08:00

129 lines
5.3 KiB
Python

import os
import json
import torch
from tqdm import tqdm
from PytorchBoot.config import ConfigManager
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory import ComponentFactory
from PytorchBoot.dataset import BaseDataset
from PytorchBoot.runners.runner import Runner
from PytorchBoot.utils import Log
@stereotype.runner("default_predictor")
class DefaultPredictor(Runner):
def __init__(self, config_path):
super().__init__(config_path)
''' Pipeline '''
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
self.pipeline = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
self.pipeline:torch.nn.Module = self.pipeline.to(self.device)
''' Experiment '''
self.model_path = self.config["experiment"]["model_path"]
self.load_experiment("default_predictor")
self.save_original_data = self.config["experiment"]["save_original_data"]
''' Testset '''
self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST)
self.test_dataset_name_list = self.test_config["dataset_list"]
self.test_set_list = []
self.test_writer_list = []
seen_name = set()
for test_dataset_name in self.test_dataset_name_list:
if test_dataset_name not in seen_name:
seen_name.add(test_dataset_name)
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
self.test_set_list.append(test_set)
self.print_info()
def run(self):
predict_result = self.predict()
self.save_predict_result(predict_result)
def predict(self):
self.pipeline.eval()
predict_result = {}
with torch.no_grad():
test_set: BaseDataset
for dataset_idx, test_set in enumerate(self.test_set_list):
test_set_config = test_set.get_config()
ratio = test_set_config["ratio"]
test_set_name = test_set.get_name()
output_list = []
data_list = []
test_loader = test_set.get_loader()
loop = tqdm(enumerate(test_loader), total=int(len(test_loader)))
for _, data in loop:
test_set.process_batch(data, self.device)
data["mode"] = namespace.Mode.TEST
output = self.pipeline(data)
output_list.append(output)
data_list.append(data)
loop.set_description(
f'Predicting [{dataset_idx+1}/{len(self.test_set_list)}] (Test: {test_set_name}, ratio={ratio})')
predict_result[test_set_name] = {
"output": output_list,
"data": data_list
}
return predict_result
def save_predict_result(self, predict_result):
result_dir = os.path.join(str(self.experiment_path), namespace.Direcotry.RESULT_DIR_NAME, self.file_name+"_predict_result")
os.makedirs(result_dir)
for test_set_name in predict_result.keys():
os.mkdir(os.path.join(result_dir, test_set_name))
idx = 0
for output, data in zip(predict_result[test_set_name]["output"], predict_result[test_set_name]["data"]):
output_path = os.path.join(result_dir, test_set_name, f"output_{idx}.pth")
torch.save(output, output_path)
if self.save_original_data:
data_path = os.path.join(result_dir, test_set_name, f"data_{idx}.pth")
torch.save(data, data_path)
idx += 1
Log.success(f"Saved predict result of {test_set_name} to {result_dir}")
Log.success(f"Saved all predict result to {result_dir}")
def load_checkpoint(self):
self.load(self.model_path)
Log.success(f"Loaded checkpoint from {self.model_path}")
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
self.load_checkpoint()
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
result_dir = os.path.join(str(self.experiment_path), namespace.Direcotry.RESULT_DIR_NAME)
os.makedirs(result_dir)
def load(self, path):
state_dict = torch.load(path)
self.pipeline.load_state_dict(state_dict)
def print_info(self):
def print_dataset(dataset: BaseDataset):
config = dataset.get_config()
name = dataset.get_name()
Log.blue(f"Dataset: {name}")
for k,v in config.items():
Log.blue(f"\t{k}: {v}")
super().print_info()
table_size = 70
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
Log.blue(self.pipeline)
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
for i, test_set in enumerate(self.test_set_list):
Log.blue(f"test dataset {i}: ")
print_dataset(test_set)
Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')