PyTorchBoot/PytorchBoot/factory/optimizer_factory.py
2024-09-13 16:58:34 +08:00

68 lines
2.5 KiB
Python

import torch.optim as optim
class OptimizerFactory:
@staticmethod
def create(config: dict, params) -> optim.Optimizer:
optim_type = config["type"]
lr = config.get("lr", 1e-3)
if optim_type == "SGD":
return optim.SGD(
params,
lr=lr,
momentum=config.get("momentum", 0.9),
weight_decay=config.get("weight_decay", 1e-4),
)
elif optim_type == "Adam":
return optim.Adam(
params,
lr=lr,
betas=config.get("betas", (0.9, 0.999)),
eps=config.get("eps", 1e-8),
)
elif optim_type == "AdamW":
return optim.AdamW(
params,
lr=lr,
betas=config.get("betas", (0.9, 0.999)),
eps=config.get("eps", 1e-8),
weight_decay=config.get("weight_decay", 1e-2),
)
elif optim_type == "RMSprop":
return optim.RMSprop(
params,
lr=lr,
alpha=config.get("alpha", 0.99),
eps=config.get("eps", 1e-8),
weight_decay=config.get("weight_decay", 1e-4),
momentum=config.get("momentum", 0.9),
)
elif optim_type == "Adagrad":
return optim.Adagrad(
params,
lr=lr,
lr_decay=config.get("lr_decay", 0),
weight_decay=config.get("weight_decay", 0),
)
elif optim_type == "Adamax":
return optim.Adamax(
params,
lr=lr,
betas=config.get("betas", (0.9, 0.999)),
eps=config.get("eps", 1e-8),
weight_decay=config.get("weight_decay", 0),
)
elif optim_type == "LBFGS":
return optim.LBFGS(
params,
lr=lr,
max_iter=config.get("max_iter", 20),
max_eval=config.get("max_eval", None),
tolerance_grad=config.get("tolerance_grad", 1e-7),
tolerance_change=config.get("tolerance_change", 1e-9),
history_size=config.get("history_size", 100),
line_search_fn=config.get("line_search_fn", None),
)
else:
raise NotImplementedError("Unknown optimizer: {}".format(optim_type))