import os import json import torch from tqdm import tqdm from PytorchBoot.config import ConfigManager import PytorchBoot.namespace as namespace import PytorchBoot.stereotype as stereotype from PytorchBoot.factory import ComponentFactory from PytorchBoot.dataset import BaseDataset from PytorchBoot.runners.runner import Runner from PytorchBoot.utils import Log @stereotype.runner("default_evaluator") class DefaultEvaluator(Runner): def __init__(self, config_path): super().__init__(config_path) ''' Pipeline ''' self.pipeline_name = self.config[namespace.Stereotype.PIPELINE] self.pipeline = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name) self.pipeline:torch.nn.Module = self.pipeline.to(self.device) ''' Experiment ''' self.model_path = self.config["experiment"]["model_path"] self.load_experiment("default_evaluator") ''' Test ''' self.test_config = ConfigManager.get(namespace.Stereotype.RUNNER, namespace.Mode.TEST) self.test_dataset_name_list = self.test_config["dataset_list"] self.test_set_list = [] self.test_writer_list = [] seen_name = set() for test_dataset_name in self.test_dataset_name_list: if test_dataset_name not in seen_name: seen_name.add(test_dataset_name) else: raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name)) test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name) self.test_set_list.append(test_set) self.print_info() def run(self): eval_result = self.test() self.save_eval_result(eval_result) def test(self): self.pipeline.eval() eval_result = {} with torch.no_grad(): test_set: BaseDataset for dataset_idx, test_set in enumerate(self.test_set_list): test_set_config = test_set.get_config() eval_list = test_set_config["eval_list"] ratio = test_set_config["ratio"] test_set_name = test_set.get_name() output_list = [] data_list = [] test_loader = test_set.get_loader() loop = tqdm(enumerate(test_loader), total=int(len(test_loader))) for _, data in loop: test_set.process_batch(data, self.device) data["mode"] = namespace.Mode.TEST output = self.pipeline(data) output_list.append(output) data_list.append(data) loop.set_description( f'Evaluating [{dataset_idx+1}/{len(self.test_set_list)}] (Test: {test_set_name}, ratio={ratio})') result_dict = self.eval_fn(output_list, data_list, eval_list) eval_result[test_set_name] = result_dict return eval_result def save_eval_result(self, eval_result): result_dir = os.path.join(str(self.experiment_path), namespace.Direcotry.RESULT_DIR_NAME) eval_result_path = os.path.join(result_dir, self.file_name + "_eval_result.json") with open(eval_result_path, "w") as f: json.dump(eval_result, f, indent=4) Log.success(f"Saved evaluation result to {eval_result_path}") @staticmethod def eval_fn(output_list, data_list, eval_list): collected_result = {} for eval_method_name in eval_list: eval_method = ComponentFactory.create(namespace.Stereotype.EVALUATION_METHOD, eval_method_name) eval_results:dict = eval_method.evaluate(output_list, data_list) for data_type, eval_result in eval_results.items(): if data_type not in collected_result: collected_result[data_type] = {} for name, value in eval_result.items(): collected_result[data_type][name] = value return collected_result def load_checkpoint(self): self.load(self.model_path) Log.success(f"Loaded checkpoint from {self.model_path}") def load_experiment(self, backup_name=None): super().load_experiment(backup_name) self.load_checkpoint() def create_experiment(self, backup_name=None): super().create_experiment(backup_name) result_dir = os.path.join(str(self.experiment_path), namespace.Direcotry.RESULT_DIR_NAME) os.makedirs(result_dir) def load(self, path): state_dict = torch.load(path) self.pipeline.load_state_dict(state_dict) def print_info(self): def print_dataset(dataset: BaseDataset): config = dataset.get_config() name = dataset.get_name() Log.blue(f"Dataset: {name}") for k,v in config.items(): Log.blue(f"\t{k}: {v}") super().print_info() table_size = 70 Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+') Log.blue(self.pipeline) Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+') for i, test_set in enumerate(self.test_set_list): Log.blue(f"test dataset {i}: ") print_dataset(test_set) Log.blue(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')